Конструкции, или почему не ломаются вещи | Страница 8 | Онлайн-библиотека


Выбрать главу

Коши осознал, что такое представление о напряжении можно использовать не только для того, чтобы предсказать разрушение материала, но и для более общего описания состояния тела в любой его точке. Другими словами, напряжение в твердом теле напоминает давление в жидкости или газе. Оно является мерой воздействия внешних сил на атомы и молекулы, из которых состоит материал и которые вынуждены под действием этих сил сближаться или удаляться друг от друга.

Таким образом, сказать, что напряжение в данной точке какого-то куска стали составляет 500 кгс/см2, ничуть не более вразумительно и не менее таинственно, чем сказать, что давление в шинах моего автомобиля 2 кгс/см2. Однако, хотя понятия о давлении и напряжении вполне сопоставимы, нужно иметь в виду, что давление действует в любом направлении внутри жидкости, тогда как напряжение является величиной, характеризующейся определенными направлениями действия. Напряжение может, в частности, действовать в одном-единственном направлении; во всяком случае, пока мы будем считать, что это именно так.

В количественном выражении напряжение в заданной точке определяется отношением силы, или нагрузки, приходящейся на небольшую площадку в окрестности этой точки, к величине этой площадки.

Если напряжение в некоторой точке мы обозначим буквой s, то напряжение = s = (нагрузка/площадь) = (Р/А), где Р - нагрузка, а А - площадь, на которую, как можно считать, эта нагрузка действует (рис. 6).

Рис. 6. Напряжение, возникающее в бруске при растяжении. (Ситуация при сжатии выглядит аналогичным образом.)

Вернемся теперь к нашему кирпичу, который в предыдущей главе мы оставили висящим на веревке. Если кирпич весит 5 кг, а веревка имеет сечение 2 мм2, то кирпич натягивает веревку с силой 5 кгс, а напряжение в веревке s = (нагрузка/площадь) = (Р/A) = 5 кгс/2 мм2 = 2,5 кгс/мм2, или, если угодно, 250 кгс/см2.

Единицы напряжения

В связи со сказанным возникает порой вызывающий досаду вопрос о единицах напряжения. Напряжение можно выразить, и часто его именно так и выражают, в различных величинах, соответствующих какой-либо единице силы, деленной на какую-либо единицу площади. Чтобы не было путаницы, в этой книге мы ограничимся использованием следующих единиц.

Меганьютон на квадратный метр - МН/м2. Это единица СИ - Международной системы единиц, которая в качестве единицы силы использует Ньютон - Н.

1Н = 0,102 кгс (приблизительно весу одного яблока).

1 МН (меганьютон)=1 млн. Н, что составляет почти 100 т.

Килограмм силы на квадратный сантиметр - кгс/см2

Перевод одних единиц в другие:

1 MH/м2= 10,2 кгс/см2, 1 кгс/см2=0,098 МН/м2.

Таким образом, полученное в нашей веревке напряжение составляет 250 кгс/см2 или 24,5 МН/м2. Обычно для приближенного вычисления напряжений нет необходимости и в абсолютно точных коэффициентах перевода одних единиц в другие.

Стоит повторить: важно осознать, что напряжение в материале, подобно давлению в жидкости, есть величина, привязанная к некоторой точке; оно не относится к какой-либо определенной площади поперечного сечения, такой, как квадратный сантиметр или квадратный метр.

Деформация

В то время как напряжение говорит нам о том, сколь интенсивно принуждаются к расхождению в данной точке твердого тела атомы, деформация говорит о том, сколь далеко этот процесс растяжения зашел, то есть каково относительное растяжение межатомных связей,

Так, если стержень, имевший первоначально длину L, под действием силы удлинился на величину l, то деформация, или относительное изменение длины стержня, которую обозначим буквой е, будет e = l/L(рис. 7)

Рис. 7. Деформация, возникающая в бруске при растяжении. (Деформация при сжатии выглядит аналогичным образом.)

Возвращаясь к нашей веревке, можно сказать, что если ее первоначальная длина была, допустим, 2 м (200 см), а под действием веса кирпича она удлинилась на 1 см, то деформация веревки е = l/L= 0,005, или 0,5%.

Деформации, возникающие в инженерной практике, обычно весьма малы, поэтому инженеры, как правило, выражают их в процентах, что уменьшает вероятность ошибки, если оперировать десятичными дробями с множеством нулей.

Подобно напряжению, деформация не связана с какой-либо опеределенной длиной, сечением или формой материала. Она также характеризует состояние материала в точке. Поскольку для определения деформации мы делим удлинение на первоначальную длину, она выражается безразмерной величиной - числом, не требующим какой-либо единицы измерения. В равной мере все сказанное относится не только к растяжению, но и к сжатию.

Модуль Юнга, или какова жесткость данного материала?

Как уже говорилось, в своей первоначальной форме закон Гука хотя и заслуживал внимания, но свалил в одну кучу свойства материала и поведение конструкций. Произошло это в основном из-за отсутствия понятий "напряжение" и "деформация", не последнюю роль сыграли здесь существовавшие в прошлом трудности, связанные с испытанием материалов.

В настоящее время для испытания материала как чего-то отличного от конструкции из него изготовляют так называемый образец. Форма образца может быть самой разной, но, как правило, это стержень с участком постоянного сечения, на котором и производятся измерения, и утолщенными концами для закрепления в испытательной машине. Обычная форма металлических образцов показана на рис. 8.

Рис. 8. Типичный образец для испытаний на растяжение

Испытательные машины также могут сильно различаться размерами и конструкцией, но по существу все они представляют собой механические приспособления для приложения к образцам нагрузки, которую при этом можно точно измерять.

Напряжение в стержне вычисляется путем деления нагрузки, регистрируемой на каждой стадии испытаний по шкале устройства, на площадь поперечного сечения образца. Растяжение стержня-образца под действием нагрузки (а следовательно, деформация материала) обычно измеряется с помощью экстензометра - чувствительного устройства, которое крепится к двум точкам образца.

Такое оборудование позволяет довольно просто измерить напряжения и деформации, которые возникают в образце материала по мере того, как мы увеличиваем нагрузку. Графическое изображение зависимости напряжения от деформации называется кривой деформирования. Эта кривая, обычный вид которой представлен на рис. 9, является характеристикой данного материала и практически не зависит от размеров испытываемого образца.

Рис. 9. Типичная кривая деформирования.

При постройке кривых деформирования для металлов и многих других твердых тел мы неизменно будем обнаруживать, что по крайней мере для небольших напряжении эти кривые имеют прямолинейные участки. В этих случаях о материале говорят, что он "подчиняется закону Гука" или является "гуковским материалом".

Мы обнаружим также, что наклоны этих прямолинейных участков для различных материалов различны (рис. 10), Очевидно, что наклон кривой деформирования является мерой деформации материала при заданном напряжении. Другими словами, он является мерой упругости или, наоборот, податливости данного твердого тела.

Рис. 10. Кривая деформирования. Тангенс угла наклона ее прямолинейного участка является параметром материала, который называется модулем упругости и обычно обозначается Е

Для любого материала, который подчиняется закону Гука, тангенс угла наклона кривой деформирования должен быть величиной постоянной. Таким образом, отношение напряжение/деформация = s/e = E и носит название модуля упругости, или модуля Юнга. Модуль Юнга - величина постоянная для данного материала. Иногда при обсуждении технических вопросов о нем говорят как о "жесткости". Кстати, слово "модуль" в переводе с латинского означает "малая мера".

8
От редактора перевода 1
Предисловие 1
Введение 1
Конструкции в нашей жизни, или как общаться с инженерами 1
Живые конструкции 2
Технические конструкции 2
Конструкции и эстетика 3
Теория упругости, или почему вещи все же ломаются 4
Часть I. Трудное рождение теории упругости 5
Глава 1 5
Почему конструкции выдерживают нагрузки, или упругость твердых тел 5
Закон Гука, или упругость твердых тел 6
Как теория упругости застыла на месте 6
Глава 2 7
Изобретение напряжения и деформации, или барон Коши и расшифровка модуля Юнга 7
Напряжение 7
Единицы напряжения 8
Деформация 8
Модуль Юнга, или какова жесткость данного материала? 8
Единицы измерения жесткости, или модуля Юнга 9
Фактические значения модуля Юнга 9
Прочность 9
Глава 3 10
Конструирование и безопасность, или можно ли доверять расчетам на прочность? 10
Французская теория и британский прагматизм 10
Коэффициент запаса и коэффициент незнания 11
Концентрация напряжений, или как "запустить" трещину 11
Глава 4 12
Упругая энергия и современная механика разрушения, с отступлениями о луках, катапультах и кенгуру 12
Энергетический подход к расчетам конструкций на прочность 13
Автомобили, лыжники и кенгуру 13
Луки 14
Катапульты 15
Эластичность, резильянс и ухабы на дорогах 16
Упругая энергия как причина разрушения 17
Энергия, или работа, разрушения 17
Гриффитс, или как жить в мире трещин и концентрации напряжений 18
"Мягкая" сталь и "высокопрочная" сталь 20
О хрупкости костей 20
Часть II. Конструкции, нагруженные растяжением 21
Глава 5 21
Растянутые конструкции и сосуды под давлением - о паровых котлах, летучих мышах и джонках 21
Трубы и сосуды высокого давления 22
Сферические сосуды высокого давления 22
Цилиндрические сосуды высокого давления 22
Китайская инженерия, или лучше прогнуться, чем лопнуть 23
Летучие мыши и птеродактили 23
Почему же птицы имеют перья? 24
Глава 6 24
О соединениях, креплениях и людях, а также о ползучести и колесах колесниц 24
Прочные соединения и человеческие слабости 25
Распределение напряжений в соединениях 26
Заклепочные соединения 26
Сварные соединения 27
Ползучесть 27
Глава 7 28
Мягкие материалы и живые конструкции, или как сконструировать червяка 28
Поверхностное натяжение 28
Поведение существующих в природе мягких тканей 29
Коэффициент Пуассона, или как работают наши артерии 30
Надежность, или о вязкости тканей животных 31
Строение мягких тканей 32
Часть III. Конструкции в условиях сжатия и изгиба 32
Глава 8 32
Стены, арки и плотины, или башни, уходящие в облака, и устойчивость каменной кладки 32
Линии давлений и устойчивость стен 33
Плотины 35
Арки 35
Масштаб, пропорции и надежность 36
О позвоночнике и скелете 37
Глава 9 37
Кое-что о мостах, или святой Бенезе и святой Изамбар 37
Арочные мосты 37
Чугунные мосты 38
Арочные мосты с подвесной проезжей частью 38
Подвесные мосты 38
Линия давления в арках и подвесных мостах 39
Мостовые фермы с верхним криволинейным поясом 39
Глава 10 40
Чем хороши балки, или о крышах, фермах и мачтах 40
Фермы перекрытий 41
Фермы в кораблестроении 42
Консоли и шарнирно опертые балки 43
Фермы мостов 44
Напряженное состояние балок 45
Продольные напряжения в изгибаемой балке 45
Глава 11 46
Тайны сдвига и кручения, или "Поларис" и вечерние туалеты 46
Терминология 46
Стенка балки в условиях сдвига - изотропные и анизотропные материалы 47
Касательное напряжение - это растяжение и сжатие, действующие под углом +45°, и наоборот 48
Складкообразование 48
Кручение 49
Центр изгиба и центр давления 49
Глава 12 51
Различные виды разрушения при сжатии, или сэндвичи, весла и Леонард Эйлер 51
Предел прочности на сжатие, или разрушение коротких стержней и колонн при сжатии 51
Сравнение прочности материалов на растяжение и на сжатие 52
Прочность дерева и композиционных материалов при сжатии 52
Леонард Эйлер и выпучивание тонких стержней и пластин 54
Трубы, корабли и бамбук, или кое-что о локальной потере устойчивости 55
Листья, сэндвичи и сотовые конструкции 55
Часть IV. И последствия были… 56
Глава 13 56
Философия конструирования, или форма, вес и стоимость 56
Проектирование конструкций, работающих на растяжение 56
Сравнения веса сжатых и растянутых конструкций 57
Масштабные эффекты, или еще раз о законе двух третей 58
Каркасные конструкции против монокока 58
Надувные конструкции 59
Колеса со спицами 59
О выборе лучшего материала, или что такое "лучший материал" 59
Материалы, топливо и энергия 60
Глава 14 61
Катастрофы, или очерк об ошибках, прегрешениях и усталости металла 61
О точности расчетов на прочность 61
Проектирование с помощью эксперимента 62
Сколько она будет служить? 62
Усталость металла, мистер Хани и пр. 63
Катастрофы деревянных кораблей 64
Еще о котлах, сосудах давления и о кипящем в них масле 64
О вырезании дыр 65
Об излишнем весе 66
Аэроупругость, или тростник, колеблемый на ветру 67
Проектирование как прикладная теология 67
Глава 15 68
Эффективность и эстетика, или мир, в котором мы должны жить 68
Об эффективности и функциональности 70
О стилях и напряжениях 72
Об имитации, подделках и украшениях 73
Приложения 73
Приложение 1. О справочниках и формулах 73
Приложения 2-4 74
Приложение 2. Теория изгиба балок 74
Приложение 3. Кручение 74
Приложение 4. Эффективность стержней (колонн) и пластин при сжатии 74
Рекомендации для дальнейших занятий 74