Конструкции, или почему не ломаются вещи | Страница 60 | Онлайн-библиотека


Выбрать главу

Выкрутасы моды и соображения престижа, кажется, играют здесь главную роль. Золото не очень подходит для часов, так же как и сталь для мебели оффисов. В викторианскую эпоху увлекались чугуном, из него делали даже такие предметы обихода, как подставки для зонтиков. Говорят, вождь одного африканского племени весь свой дворец построил из чугуна. Хотя выбор материала иногда является следствием эксцентричности, чаще он основан на традициях и консерватизме. Конечно, в основе традиционного выбора материала нередко лежат весьма веские причины, но во многих случаях он обусловлен случайными обстоятельствами, а порой обоснованность и случайность так тесно переплетены, что трудно понять, насколько он оправдан. Люди искусства, от Льюиса Кэррола до Сальватора Дали, открыли, что можно вызвать сильный психологический шок одной мыслью о том, что самые знакомые предметы могут быть сделаны из явно неподходящего материала, например резины или хлеба с маслом. Инженеры очень восприимчивы к таким эффектам; их бы сегодня также шокировала идея сделать большой деревянный корабль, как наших предков - идея сделать корабль из железа.

Очень любопытно проследить, как меняется со временем отношение к тем или иным материалам. Возьмем, например, соломенные крыши. Солома была самым дешевым и потому самым непрестижным кровельным материалом, однако в беднейших сельских районах ею часто приходилось покрывать даже крыши церквей. В течение XVII в., когда церковные приходы сделались побогаче, по подписке собирали деньги на замену соломы шифером или черепицей. Иногда денег на всю крышу не хватало, и тогда приходилось оставлять солому в тех местах, где она была меньше заметна для прохожих, - черепицей покрывалась только сторона, обращенная к главной дороге. Сегодня престижность обернулась другой стороной - соломенная крыша в английских графствах служит предметом гордости весьма богатых бизнесменов.

Материалы, топливо и энергия

В будущем XX в., возможно, назовут веком стали и бетона. Но не исключено, что о нем будут говорить и как о веке уродств или расточительства. Однако не только инженеры одержимы сталью и бетоном (и почти безразличны к последствиям этой одержимости), ими заразились и политики, и широкая публика.

Болезнь, по-видимому, началась лет двести назад со времен промышленной революции и появления дешевого угля; это привело к дешевому железу и железным паровым машинам, превращавшим дешевый уголь в дешевую механическую энергию и т. д., круг за кругом, раскручивалось колесо производства и потребления энергии. В угле и нефти в малом объеме запасено большое количество энергии. Машины очень быстро перерабатывают заметную часть этой энергии, но также в малом объеме. Затем они выдают эту энергию в концентрированной форме в виде электричества или механической работы. На этой концентрации энергии основывается вся наша современная техника. Материалы этой техники - сталь, алюминий и бетон - сами требуют больших количеств энергии для своего производства (табл. 6).

Таблица 6. Количество энергии, необходимое для производства различных материалов

Материал / Энергозатраты для производства 1 т материала, Дж х 109 / Нефтяной эквивалент, т

Сталь (мягкая) / 60 / 1,5

Титан / 800 / 20

Алюминий / 250 / 6

Стекло / 24 / 0,6

Кирпич / 6 / 0,15

Бетон / 4 / 0,1

Углеволокнистые композиты / 4000 / 100

Дерево (сосна, ель) / 1 / 0,025

Полилиэтилен / 45 / 1,1

Поскольку производство этих материалов весьма энергоемко, их можно эффективно использовать только в условиях высокой энерговооруженности экономики. Сооружая технические устройства, мы затрачиваем не только денежные средства, но и энергию, а потому необходимо обеспечить возврат того и другого.

Несмотря на высокую стоимость энергии и оскудение ее запасов, потребление энергии скорее увеличивается, чем уменьшается. Такие совершенные машины, как газовые турбины, все более и более лихорадочно производят все больше и больше энергии внутри все меньшего и меньшего объема. Совершенные устройства требуют совершенных материалов, и такие новые материалы, как высокотемпературные сплавы и пластики, армированные углеволокном, требуют для своего производства огромного количества энергии.

Весьма вероятно, что такое положение вещей не может продолжаться бесконечно, ибо вся эта система полностью зависит от дешевых и концентрированных источников энергии, таких, как нефть и уголь.

Живую природу можно считать совершенно уникальной системой, приспособленной для извлечения энергии не из концентрированных, а из "размазанных" источников, причем использует она эту энергию с величайшей экономией. Сейчас предпринимается много попыток собирать энергию для технических целей из таких неконцентрированных источников, как солнечный свет, ветер или океан. Многие из них, вероятно, окончатся неудачей, потому что энергетические затраты на постройку соответствующих систем из стали, бетона и других материалов могут оказаться слишком велики и даже не компенсируются при их эксплуатации. Очевидно, необходим совершенно другой подход ко всей проблеме "эффективности". Природа смотрит на эти проблемы с точки зрения "метаболических затрат", и, быть может, мы должны перенять ее опыт.

Дело не только в том, что для производства одной тонны металла или бетона требуется много энергии. Сами эти громоздкие, но слабо нагруженные конструкции, обычно необходимые для систем с малой плотностью перерабатываемой энергии, могут оказаться в несколько раз тяжелее, если их делать из стали и бетона, а не из более подходящих требующих специальной разработки материалов.

Мы вскоре увидим, что одним из самых эффективных в конструкционном смысле материалов может быть дерево. При больших размерах и малых нагрузках конструкция из дерева во много раз легче, чем конструкция из бетона или стали. В прошлом затруднения с использованием древесины во многом определялись медленным ростом леса и необходимостью дорогостоящей выдержки древесины.

Возможно, самое важное достижение в области материалов за последнее время принадлежит генетикам, которые вывели быстрорастущие породы деревьев, дающих коммерческую древесину. Сейчас разводят разновидности сосны (Pinus radiata), ствол которой при благоприятных условиях дает прирост до 12 см в диаметре в год, так что лес готов для рубки на деловую древесину уже через 6 лет после посадки. Появились реальные перспективы превратить дерево в техническую культуру с коротким периодом созревания. Важно, что почти вся энергия, необходимая для выращивания древесины, поступает бесплатно, от Солнца. Кроме того, деревянную конструкцию можно сжечь за ненадобностью, получив большую часть энергии, накопленной деревом во время роста, чего, конечно, нельзя сказать ни о стали, ни о бетоне.

Древесина обычно требовала длительной и дорогостоящей выдержки в специальных сушилках, которые потребляют значительное количество энергии. Сегодня оказалось возможным сократить срок выдержки сортовой мягкой древесины до 24 ч при низкой стоимости процесса сушки. Это имеет очень важное значение не только для строительного дела, но и в связи с мировым энергетическим кризисом.

Анализ весовой эффективности различных материалов в различных конструкциях приведен в приложении 4. Проектирование большинства технически совершенных конструкций, таких, как, например, самолет, во многом определяется величиной E / ρ, которая называется удельным модулем Юнга и определяет, так сказать, весовую "стоимость" деформаций конструкции. Оказывается, однако, что для большинства обычных конструкционных материалов - молибдена, стали, титана, магния, алюминия и дерева - величина E / ρ приблизительно одинакова. Именно поэтому в течение последних 15-20 лет правительства разных стран затратили столь большие суммы на разработку новых материалов, основой которых служат такие экзотические волокна, как нити бора и карбида кремния, углеволокна.

Материалы этого типа могут быть более или менее эффективными в авиакосмической промышленности, но одно можно сказать с уверенностью - они не только дороги, но и требуют больших затрат энергии для своего производства. По этой причине они, вероятно, будут применяться только в специальных целях и, по моему мнению, не найдут широкого применения в обозримом будущем.

60
От редактора перевода 1
Предисловие 1
Введение 1
Конструкции в нашей жизни, или как общаться с инженерами 1
Живые конструкции 2
Технические конструкции 2
Конструкции и эстетика 3
Теория упругости, или почему вещи все же ломаются 4
Часть I. Трудное рождение теории упругости 5
Глава 1 5
Почему конструкции выдерживают нагрузки, или упругость твердых тел 5
Закон Гука, или упругость твердых тел 6
Как теория упругости застыла на месте 6
Глава 2 7
Изобретение напряжения и деформации, или барон Коши и расшифровка модуля Юнга 7
Напряжение 7
Единицы напряжения 8
Деформация 8
Модуль Юнга, или какова жесткость данного материала? 8
Единицы измерения жесткости, или модуля Юнга 9
Фактические значения модуля Юнга 9
Прочность 9
Глава 3 10
Конструирование и безопасность, или можно ли доверять расчетам на прочность? 10
Французская теория и британский прагматизм 10
Коэффициент запаса и коэффициент незнания 11
Концентрация напряжений, или как "запустить" трещину 11
Глава 4 12
Упругая энергия и современная механика разрушения, с отступлениями о луках, катапультах и кенгуру 12
Энергетический подход к расчетам конструкций на прочность 13
Автомобили, лыжники и кенгуру 13
Луки 14
Катапульты 15
Эластичность, резильянс и ухабы на дорогах 16
Упругая энергия как причина разрушения 17
Энергия, или работа, разрушения 17
Гриффитс, или как жить в мире трещин и концентрации напряжений 18
"Мягкая" сталь и "высокопрочная" сталь 20
О хрупкости костей 20
Часть II. Конструкции, нагруженные растяжением 21
Глава 5 21
Растянутые конструкции и сосуды под давлением - о паровых котлах, летучих мышах и джонках 21
Трубы и сосуды высокого давления 22
Сферические сосуды высокого давления 22
Цилиндрические сосуды высокого давления 22
Китайская инженерия, или лучше прогнуться, чем лопнуть 23
Летучие мыши и птеродактили 23
Почему же птицы имеют перья? 24
Глава 6 24
О соединениях, креплениях и людях, а также о ползучести и колесах колесниц 24
Прочные соединения и человеческие слабости 25
Распределение напряжений в соединениях 26
Заклепочные соединения 26
Сварные соединения 27
Ползучесть 27
Глава 7 28
Мягкие материалы и живые конструкции, или как сконструировать червяка 28
Поверхностное натяжение 28
Поведение существующих в природе мягких тканей 29
Коэффициент Пуассона, или как работают наши артерии 30
Надежность, или о вязкости тканей животных 31
Строение мягких тканей 32
Часть III. Конструкции в условиях сжатия и изгиба 32
Глава 8 32
Стены, арки и плотины, или башни, уходящие в облака, и устойчивость каменной кладки 32
Линии давлений и устойчивость стен 33
Плотины 35
Арки 35
Масштаб, пропорции и надежность 36
О позвоночнике и скелете 37
Глава 9 37
Кое-что о мостах, или святой Бенезе и святой Изамбар 37
Арочные мосты 37
Чугунные мосты 38
Арочные мосты с подвесной проезжей частью 38
Подвесные мосты 38
Линия давления в арках и подвесных мостах 39
Мостовые фермы с верхним криволинейным поясом 39
Глава 10 40
Чем хороши балки, или о крышах, фермах и мачтах 40
Фермы перекрытий 41
Фермы в кораблестроении 42
Консоли и шарнирно опертые балки 43
Фермы мостов 44
Напряженное состояние балок 45
Продольные напряжения в изгибаемой балке 45
Глава 11 46
Тайны сдвига и кручения, или "Поларис" и вечерние туалеты 46
Терминология 46
Стенка балки в условиях сдвига - изотропные и анизотропные материалы 47
Касательное напряжение - это растяжение и сжатие, действующие под углом +45°, и наоборот 48
Складкообразование 48
Кручение 49
Центр изгиба и центр давления 49
Глава 12 51
Различные виды разрушения при сжатии, или сэндвичи, весла и Леонард Эйлер 51
Предел прочности на сжатие, или разрушение коротких стержней и колонн при сжатии 51
Сравнение прочности материалов на растяжение и на сжатие 52
Прочность дерева и композиционных материалов при сжатии 52
Леонард Эйлер и выпучивание тонких стержней и пластин 54
Трубы, корабли и бамбук, или кое-что о локальной потере устойчивости 55
Листья, сэндвичи и сотовые конструкции 55
Часть IV. И последствия были… 56
Глава 13 56
Философия конструирования, или форма, вес и стоимость 56
Проектирование конструкций, работающих на растяжение 56
Сравнения веса сжатых и растянутых конструкций 57
Масштабные эффекты, или еще раз о законе двух третей 58
Каркасные конструкции против монокока 58
Надувные конструкции 59
Колеса со спицами 59
О выборе лучшего материала, или что такое "лучший материал" 59
Материалы, топливо и энергия 60
Глава 14 61
Катастрофы, или очерк об ошибках, прегрешениях и усталости металла 61
О точности расчетов на прочность 61
Проектирование с помощью эксперимента 62
Сколько она будет служить? 62
Усталость металла, мистер Хани и пр. 63
Катастрофы деревянных кораблей 64
Еще о котлах, сосудах давления и о кипящем в них масле 64
О вырезании дыр 65
Об излишнем весе 66
Аэроупругость, или тростник, колеблемый на ветру 67
Проектирование как прикладная теология 67
Глава 15 68
Эффективность и эстетика, или мир, в котором мы должны жить 68
Об эффективности и функциональности 70
О стилях и напряжениях 72
Об имитации, подделках и украшениях 73
Приложения 73
Приложение 1. О справочниках и формулах 73
Приложения 2-4 74
Приложение 2. Теория изгиба балок 74
Приложение 3. Кручение 74
Приложение 4. Эффективность стержней (колонн) и пластин при сжатии 74
Рекомендации для дальнейших занятий 74