Конструкции, или почему не ломаются вещи | Страница 51 | Онлайн-библиотека


Выбрать главу

Недостаток крутильной жесткости для автомобиля не так опасен, как для самолета, хотя качество подвески автомобиля и его способность "держать дорогу" также определяются жесткостью корпуса. Автомобили довоенного времени были порой великолепны, но, как и самолеты прошлого, страдали от того, что их создатели гораздо больше внимания уделяли двигателю и трансмиссии, чем кузову или шасси. Действительно, крутильная жесткость их кузова целиком зависела от разницы изгибов двух длинных довольно гибких балок, как и в старом Д-8. Именно малая крутильная жесткость кузова приводила к тому, что автомобиль так плохо "держал дорогу", и управление им было трудным и утомительным делом.

Чтобы удержать колеса от потери контакта с дорогой, рессоры и амортизаторы спортивных автомобилей тех времен делались все более жесткими, пока не превратились в практически недеформируемые элементы. В результате, конечно, езда сделалась почти невыносимой из-за резких толчков и подпрыгиваний. Как и громкий выхлоп, все это, без сомнения, производило впечатление на тогдашних пассажирок, но в действительности не очень-то помогало удерживать автомобиль на дороге. Решение, принятое большинством конструкторов современных автомобилей, состоит в том, что они выбросили не выдерживавшее кручения шасси, а изгибающие и крутящие нагрузки переложили на стальной штампованный кузов. Вместе с крышей он образует коробку, которая в принципе не очень сильно отличается от крыльев старых бипланов. Имея в своем распоряжении такую жесткую конструкцию, инженер может сосредоточить свои усилия на разработке научно обоснованной системы подвески, которая одновременно была бы и безопасной, и комфортабельной.

Как мы уже говорили, крутильная жесткость конструкции пропорциональна квадрату ее поперечного сечения. В этом отношении с такими крупными предметами, как крыло самолета, корпус корабля или кузов автомобиля, все обстоит более или менее неплохо. А вот вращающиеся валы двигателей или других механизмов часто имеют совершенно недостаточную прочность, хотя и делаются обычно из сплошной стали, так как площадь поперечного сечения у них обычно жестко ограничена. В этом одна из причин огромного веса таких машин. Как скажет вам всякий опытный конструктор, именно требования к жесткости и прочности на кручение, когда они становятся определяющими, являются бичом их создателей. Сразу возрастают вес и стоимость, и все это вместе приводит к непропорциональному росту трудностей и забот инженера.

Природа, кажется, не заботится об экономии времени и своих усилий, а тем более о деньгах, но она очень чувствительна к "метаболической стоимости", то есть стоимости конструкции в терминах пищи и энергии, кроме того, она вообще довольно тонко "чувствует" вес конструкции. Не удивительно поэтому, что она избегает кручения как яда. Действительно, ей почти всегда удается увернуться от любой серьезной необходимости обеспечить большую жесткость и прочность на кручение. Животные, как правило, пока на них не действуют "нерасчетные" нагрузки, могут позволить себе быть "слабыми" на кручение. Никто из нас не любит, когда ему выкручивают руки, а крутящие нагрузки на ноги обычно достаточно малы. Однако, когда мы крепим к своим ногам длинные рычаги, называемые лыжами, то при неважной езде легко возникают действующие на ноги большие крутящие моменты. Поскольку в этом причина большинства переломов ног, для горнолыжников были разработаны современные безопасные крепления, автоматически освобождающие ногу при кручении.

Не только ноги, но и практически все кости удивительно слабы на кручение. При надобности убить курицу или другую домашнюю птицу проще всего, как хорошо известно, свернуть ей шею. Но не все знают, как слаб на кручение позвоночник, а сей малоприятный прием очень наглядно демонстрирует это. Но сворачивание голов, как и катание на лыжах, - это опасности, совершенно не предусмотренные природой. В отличие от инженеров она никогда не проявляла интереса к вращательному движению и (подобно африканцам) даже не позаботилась об изобретении колеса.

Глава 12

Различные виды разрушения при сжатии, или сэндвичи, весла и Леонард Эйлер

По причине слабости натуры нашей не можем всегда не согбенны быть.

Как и следовало ожидать, при действии сил сжатия конструкции разрушаются иначе, чем при растяжении. Когда мы нагружаем твердое тело растяжением, расстояния между образующими его атомами и молекулами увеличиваются. При этом натягиваются и межатомные связи, но они могут растягиваться лишь в ограниченных пределах. Если деформации превышают примерно 20%, химические связи ослабевают и в конце концов исчезают совсем. Хотя в действительности полная картина процесса разрыва твердого тела достаточно сложна, можно, вообще говоря, утверждать, что, когда растяжение какой-то большой части межатомных связей достигнет предельного значения, произойдет и разрушение материала в целом. Нечто подобное происходит и тогда, когда материал разрушается при кручении. Однако при сжатии происходит несколько иное.

Если сжимать твердое тело, то расстояния между его атомами и молекулами будут уменьшаться, а межатомные силы отталкивания в любых нормальных условиях с ростом деформации сжатия будут возрастать почти безгранично. И только в случае, когда действуют огромные гравитационные силы, существующие в некоторых звездах, называемых астрономами белыми карликами, силы отталкивания уже не могут противостоять фантастическим силам гравитационного сжатия, причем с катастрофическими последствиями.

Тем не менее множество обычных земных конструкций при сжатии все-таки разрушается. Дело в том, что сжимающие напряжения в любой данной конструкции никогда не могут расти беспредельно, материал или конструкция всегда находит способ избежать этого, просто "выскользнув" из-под нагрузки куда-нибудь в боковом направлении. С энергетической точки зрения конструкции выгодно избавиться от избытка упругой энергии при сжатии с помощью того или иного механизма обмена энергией, удобного в данной конкретной ситуации.

Из-за этого сжатые конструкции обладают весьма прихотливыми свойствами и изучение их разрушения - это изучение способов, какими можно выбраться оттуда, где на тебя давят. Как известно, это можно сделать разными способами. Выбор возможного способа определяется формой, пропорциями и материалом самой конструкции.

О каменной кладке мы говорили уже довольно много. И хотя здания - это по сути своей сжатые конструкции и кладка всегда должна находиться в сжатом состоянии, следует сказать, что от сжатия они не разрушаются никогда. Как ни парадоксально, но они могут разрушиться, только если в них возникнут растягивающие напряжения. При этом у стены появляется бурная тенденция к порождению "шарнирных" точек; поворачиваясь вокруг этих точек, стены рушатся.

Арки - конструкции, гораздо более прочные и надежные, чем стены, но и в них иногда могут образоваться четыре "шарнирные" точки, после чего арка может уменьшить как свою упругую энергию, так и потенциальную энергию, сложившись вначале как механизм и свалившись затем грудой камней. Во всяком случае, согласно расчетам, проводимым нами в гл. 8, существующие напряжения сжатия в каменной кладке фактически очень невелики, они гораздо ниже общепринятого предела прочности материала на сжатие.

Предел прочности на сжатие, или разрушение коротких стержней и колонн при сжатии

Если взять кирпич или небольшой бетонный блок и подвергнуть их действию значительной сжимающей нагрузки (в испытательной машине или любым другим методом), материал в конце концов, разрушится тем способом, который условно называют "разрушением при сжатии". Хрупкие материалы, например камень, кирпич, бетон или стекло, обычно при этом рассыпаются на куски, а иногда и в пыль. Но, строго говоря, это вовсе не разрушение сжатием, так как в действительности оно почти всегда происходит из-за сдвига. Как мы видели в предыдущей главе, сжатие и растяжение образца с необходимостью приводят к появлению напряжений сдвига, действующих под углом 45°, и именно этот сдвиг по наклонным площадкам и служит обычно причиной разрушения коротких образцов при их сжатии.

51
От редактора перевода 1
Предисловие 1
Введение 1
Конструкции в нашей жизни, или как общаться с инженерами 1
Живые конструкции 2
Технические конструкции 2
Конструкции и эстетика 3
Теория упругости, или почему вещи все же ломаются 4
Часть I. Трудное рождение теории упругости 5
Глава 1 5
Почему конструкции выдерживают нагрузки, или упругость твердых тел 5
Закон Гука, или упругость твердых тел 6
Как теория упругости застыла на месте 6
Глава 2 7
Изобретение напряжения и деформации, или барон Коши и расшифровка модуля Юнга 7
Напряжение 7
Единицы напряжения 8
Деформация 8
Модуль Юнга, или какова жесткость данного материала? 8
Единицы измерения жесткости, или модуля Юнга 9
Фактические значения модуля Юнга 9
Прочность 9
Глава 3 10
Конструирование и безопасность, или можно ли доверять расчетам на прочность? 10
Французская теория и британский прагматизм 10
Коэффициент запаса и коэффициент незнания 11
Концентрация напряжений, или как "запустить" трещину 11
Глава 4 12
Упругая энергия и современная механика разрушения, с отступлениями о луках, катапультах и кенгуру 12
Энергетический подход к расчетам конструкций на прочность 13
Автомобили, лыжники и кенгуру 13
Луки 14
Катапульты 15
Эластичность, резильянс и ухабы на дорогах 16
Упругая энергия как причина разрушения 17
Энергия, или работа, разрушения 17
Гриффитс, или как жить в мире трещин и концентрации напряжений 18
"Мягкая" сталь и "высокопрочная" сталь 20
О хрупкости костей 20
Часть II. Конструкции, нагруженные растяжением 21
Глава 5 21
Растянутые конструкции и сосуды под давлением - о паровых котлах, летучих мышах и джонках 21
Трубы и сосуды высокого давления 22
Сферические сосуды высокого давления 22
Цилиндрические сосуды высокого давления 22
Китайская инженерия, или лучше прогнуться, чем лопнуть 23
Летучие мыши и птеродактили 23
Почему же птицы имеют перья? 24
Глава 6 24
О соединениях, креплениях и людях, а также о ползучести и колесах колесниц 24
Прочные соединения и человеческие слабости 25
Распределение напряжений в соединениях 26
Заклепочные соединения 26
Сварные соединения 27
Ползучесть 27
Глава 7 28
Мягкие материалы и живые конструкции, или как сконструировать червяка 28
Поверхностное натяжение 28
Поведение существующих в природе мягких тканей 29
Коэффициент Пуассона, или как работают наши артерии 30
Надежность, или о вязкости тканей животных 31
Строение мягких тканей 32
Часть III. Конструкции в условиях сжатия и изгиба 32
Глава 8 32
Стены, арки и плотины, или башни, уходящие в облака, и устойчивость каменной кладки 32
Линии давлений и устойчивость стен 33
Плотины 35
Арки 35
Масштаб, пропорции и надежность 36
О позвоночнике и скелете 37
Глава 9 37
Кое-что о мостах, или святой Бенезе и святой Изамбар 37
Арочные мосты 37
Чугунные мосты 38
Арочные мосты с подвесной проезжей частью 38
Подвесные мосты 38
Линия давления в арках и подвесных мостах 39
Мостовые фермы с верхним криволинейным поясом 39
Глава 10 40
Чем хороши балки, или о крышах, фермах и мачтах 40
Фермы перекрытий 41
Фермы в кораблестроении 42
Консоли и шарнирно опертые балки 43
Фермы мостов 44
Напряженное состояние балок 45
Продольные напряжения в изгибаемой балке 45
Глава 11 46
Тайны сдвига и кручения, или "Поларис" и вечерние туалеты 46
Терминология 46
Стенка балки в условиях сдвига - изотропные и анизотропные материалы 47
Касательное напряжение - это растяжение и сжатие, действующие под углом +45°, и наоборот 48
Складкообразование 48
Кручение 49
Центр изгиба и центр давления 49
Глава 12 51
Различные виды разрушения при сжатии, или сэндвичи, весла и Леонард Эйлер 51
Предел прочности на сжатие, или разрушение коротких стержней и колонн при сжатии 51
Сравнение прочности материалов на растяжение и на сжатие 52
Прочность дерева и композиционных материалов при сжатии 52
Леонард Эйлер и выпучивание тонких стержней и пластин 54
Трубы, корабли и бамбук, или кое-что о локальной потере устойчивости 55
Листья, сэндвичи и сотовые конструкции 55
Часть IV. И последствия были… 56
Глава 13 56
Философия конструирования, или форма, вес и стоимость 56
Проектирование конструкций, работающих на растяжение 56
Сравнения веса сжатых и растянутых конструкций 57
Масштабные эффекты, или еще раз о законе двух третей 58
Каркасные конструкции против монокока 58
Надувные конструкции 59
Колеса со спицами 59
О выборе лучшего материала, или что такое "лучший материал" 59
Материалы, топливо и энергия 60
Глава 14 61
Катастрофы, или очерк об ошибках, прегрешениях и усталости металла 61
О точности расчетов на прочность 61
Проектирование с помощью эксперимента 62
Сколько она будет служить? 62
Усталость металла, мистер Хани и пр. 63
Катастрофы деревянных кораблей 64
Еще о котлах, сосудах давления и о кипящем в них масле 64
О вырезании дыр 65
Об излишнем весе 66
Аэроупругость, или тростник, колеблемый на ветру 67
Проектирование как прикладная теология 67
Глава 15 68
Эффективность и эстетика, или мир, в котором мы должны жить 68
Об эффективности и функциональности 70
О стилях и напряжениях 72
Об имитации, подделках и украшениях 73
Приложения 73
Приложение 1. О справочниках и формулах 73
Приложения 2-4 74
Приложение 2. Теория изгиба балок 74
Приложение 3. Кручение 74
Приложение 4. Эффективность стержней (колонн) и пластин при сжатии 74
Рекомендации для дальнейших занятий 74