Конструкции, или почему не ломаются вещи | Страница 47 | Онлайн-библиотека


Выбрать главу

б - деформация сдвига - это угол γ, на который искажается прямой угол в результате действия касательного напряжения τ.

Рис. 119. Кривая деформирования при сдвиге похожа на соответствующую зависимость при растяжении.

Тангенс угла наклона прямолинейной части равен модулю сдвига: G = τ/γ.

Для таких твердых тел, как металл, бетон или кость, упругая деформация сдвига обычно меньше 1° (1/57 радиана). При больших деформациях материалы этого типа либо разрушаются, либо испытывают необратимые пластические деформации - текут подобно сливочному маслу.

Однако такие материалы, как резина, текстильные ткани или мягкие биологические ткани, могут испытывать гораздо большие упругие и обратимые деформации сдвига - примерно до 30-40°. Для жидкостей и вязких материалов вроде патоки, крема или пластилина деформации сдвига не ограничены, но они и необратимы.

Модуль сдвига - G. Как и при растяжении, при малых и умеренных напряжениях большинство твердых тел следуют закону Гука при сдвиге. Так, построив график зависимости напряжения сдвига τ от деформации γ, мы получим кривую, которая по крайней мере на ее начальном участке близка к прямой линии (рис. 119). Наклон этой прямой характеризует сдвиговую жесткость материала; тангенс угла наклона называется модулем сдвига. Он обозначается G. Таким образом,

модуль сдвига = (касательное напряжение / деформация сдвига) = τ/γ=G

Модуль сдвига G аналогичен по смыслу модулю Юнга Е и, подобно последнему, имеет размерность единиц напряжения, например МН/м2 (кгс/мм2).

Стенка балки в условиях сдвига - изотропные и анизотропные материалы

Как мы уже видели в предыдущей главе, хотя в верхней и нижней полках балки (или верхних и нижних стержнях фермы) возникают большие растягивающие или сжимающие напряжения (или усилия в стяжках), которые уравновешивают направленную вниз нагрузку и позволяют балке выполнять возложенную на нее миссию, - это напряжения сдвига, возникающие в стенке балки, соединяющей верхнюю и нижнюю ее полки. Стенка балки обычно представляет собой сплошную металлическую пластину, в ферме те же самые функции выполняет какая-либо решетчатая структура.

Так как между материалом и конструкцией нельзя провести четкой грани, то и здесь не очень важно, чем воспринимается перерезывающая сила в балке, сплошной ли стенкой или же решеткой, которая может быть из стержней, проволоки, деревянных брусьев или чего-либо другого. Правда, одно важное отличие здесь есть. Если стенка сделана, скажем, из металлической пластины, то не имеет никакого значения, под каким углом она была вырезана из большого листа, так как свойства металла по всем направлениям одинаковы. Такие материалы, а к ним относятся металлы, кирпич, бетон, стекло и большинство видов камня, называются изотропными, что по-гречески означает "одинаковые во всех направлениях", Тот факт, что металл изотропен (или почти изотропен) и имеет одинаковые по всем направлениям свойства, упрощает жизнь инженеров и объясняет их особое пристрастие к металлам.

Рассмотрим теперь стенку в виде решетки. Очевидно, что ее стержни должны располагаться под углом около +45° к оси балки. В противном случае стенка не будет иметь достаточной сдвиговой жесткости (рис. 120 и 121), под нагрузкой решетка сложится, и ферма скорее всего разрушится. Материалы, поведение которых напоминает поведение нашей решетки, называются анизотропными (или иногда аллотропными), что по-гречески означает "различные в различных направлениях".

Рис. 120. Сдвиг приводит к сжатию и растяжению под углом +45° к направлению сдвига.

Рис. 121. Системы, подобные той, что изображена справа, являются жесткими на сдвиг, а системы, подобные изображенной слева, плохо ему сопротивляются.

Дерево, ткани и почти все биологические материалы анизотропны, причем каждый по-своему; это обстоятельство весьма усложняет жизнь, и не только инженерам. Ткань для одежды является самым распространенным рукотворным материалом, и она в высшей степени анизотропна. Как мы уже не раз говорили, различия между материалом и конструкцией довольно туманны, и ткань, хотя портные и называют ее материалом, на самом деле представляет собой конструкцию, состоящую из отдельных нитей, перекрещивающихся под прямым углом, и ведет себя при действии нагрузкой почти так же, как и решетчатая стенка балки или фермы.

Взяв в руки квадратный кусок обыкновенной ткани - это может быть носовой платок, - вы увидите, что в зависимости от направления приложенной растягивающей силы она деформируется совершенно по-разному. Если вы тянете строго вдоль нитей основы или утка, ткань почти не растягивается; другими словами, ее жесткость на растяжение в этих направлениях велика. Более того, внимательно присмотревшись, вы заметите, что при этом сужение ткани в поперечном направлении тоже невелико (рис. 122), так что коэффициент Пуассона (о котором мы говорили в гл. 7 в связи с артериями) мал.

Рис. 122. При растяжении ткани параллельно нитям основы или утка материал оказывается жестким и его поперечное сокращение незначительно.

Но если вы теперь потянете ткань под углом 45° к направлению нити, то есть по диагонали, или, как говорят портные, "по косой", то она растянется гораздо больше; можно сказать, что в этом случае модуль Юнга весьма невелик. Одновременно произойдет большое поперечное сокращение, так что в этом направлении величина коэффициента Пуассона станет гораздо больше, а он может достигать величин порядка 1 (рис. 123). В целом же, чем более свободно соткана ткань, тем больше будет различие между ее поведением в диагональном и продольно-поперечном направлениях.

Рис. 123. Если ткань растягивается по диагонали, то материал легко поддается растяжению, коэффициент Пуассона для этого направления велик и соответственно поперечное сокращение значительно.

Думаю, что немногие слышали слово "анизотропия", но такое поведение тканей на протяжении веков, должно быть, было известно почти каждому. Довольно удивительно, однако, что анизотропные свойства тканей до недавнего времени не только не использовались в технике и обыденной жизни, но даже не были осознаны.

Оставим пока в стороне существо анизотропии и обратимся к ее проявлениям. Первое, что нам совершенно ясно, это то, что мы можем свести к минимуму искажения формы текстильных изделий, если нам удастся направить главные напряжения по возможности вдоль нитей основы и утка. Обычно это приводит к продольно-поперечному раскрою материала. Если обстоятельства таковы, что ткань тянется под углом 45°, по косой, возникают гораздо большие искажения первоначальной формы, но они симметричны. А вот если мы окажемся настолько непредусмотрительными, что рабочие нагрузки будут приложены не в продольном или поперечном и не в диагональном, а в некотором промежуточном направлении, тогда возникнут не только большие, но и совершенно не симметричные искажения. Одежда в этом случае растянется и примет странный и почти наверняка непривлекательный вид.

Изготовление парусов почти во все времена было важной отраслью хозяйства, и тем не менее европейские мастера никогда до конца не понимали сути поведения парусины. Столетиями они делали паруса таким образом, что их материал растягивался в косом по отношению к нитям основы и утка направлении. Такие паруса быстро делались мешковатыми и плохо работали при встречном ветре. Свою лепту внесло здесь европейское пристрастие к льняной парусине, которая особенно легко деформировалась из-за неплотного переплетения нитей.

Изготовление парусов на современном уровне относится к началу XIX в. Приоритет здесь принадлежит американским мастерам, которые использовали туго сотканную парусину из хлопка и так располагали швы, чтобы направление нитей более или менее соответствовало направлению возникающих напряжений. Вследствие этого американские корабли могли плавать быстрее и круче к ветру, чем британские. Потребовалась, однако, основательная встряска, прежде чем все эти простые факты дошли до сознания английских мастеров. Это произошло благодаря шуму вокруг яхты "Америка", которая в 1851 г. пришла из Нью-Йорка в Ковец для участия в гонках с быстроходнейшими английскими яхтами.

47
От редактора перевода 1
Предисловие 1
Введение 1
Конструкции в нашей жизни, или как общаться с инженерами 1
Живые конструкции 2
Технические конструкции 2
Конструкции и эстетика 3
Теория упругости, или почему вещи все же ломаются 4
Часть I. Трудное рождение теории упругости 5
Глава 1 5
Почему конструкции выдерживают нагрузки, или упругость твердых тел 5
Закон Гука, или упругость твердых тел 6
Как теория упругости застыла на месте 6
Глава 2 7
Изобретение напряжения и деформации, или барон Коши и расшифровка модуля Юнга 7
Напряжение 7
Единицы напряжения 8
Деформация 8
Модуль Юнга, или какова жесткость данного материала? 8
Единицы измерения жесткости, или модуля Юнга 9
Фактические значения модуля Юнга 9
Прочность 9
Глава 3 10
Конструирование и безопасность, или можно ли доверять расчетам на прочность? 10
Французская теория и британский прагматизм 10
Коэффициент запаса и коэффициент незнания 11
Концентрация напряжений, или как "запустить" трещину 11
Глава 4 12
Упругая энергия и современная механика разрушения, с отступлениями о луках, катапультах и кенгуру 12
Энергетический подход к расчетам конструкций на прочность 13
Автомобили, лыжники и кенгуру 13
Луки 14
Катапульты 15
Эластичность, резильянс и ухабы на дорогах 16
Упругая энергия как причина разрушения 17
Энергия, или работа, разрушения 17
Гриффитс, или как жить в мире трещин и концентрации напряжений 18
"Мягкая" сталь и "высокопрочная" сталь 20
О хрупкости костей 20
Часть II. Конструкции, нагруженные растяжением 21
Глава 5 21
Растянутые конструкции и сосуды под давлением - о паровых котлах, летучих мышах и джонках 21
Трубы и сосуды высокого давления 22
Сферические сосуды высокого давления 22
Цилиндрические сосуды высокого давления 22
Китайская инженерия, или лучше прогнуться, чем лопнуть 23
Летучие мыши и птеродактили 23
Почему же птицы имеют перья? 24
Глава 6 24
О соединениях, креплениях и людях, а также о ползучести и колесах колесниц 24
Прочные соединения и человеческие слабости 25
Распределение напряжений в соединениях 26
Заклепочные соединения 26
Сварные соединения 27
Ползучесть 27
Глава 7 28
Мягкие материалы и живые конструкции, или как сконструировать червяка 28
Поверхностное натяжение 28
Поведение существующих в природе мягких тканей 29
Коэффициент Пуассона, или как работают наши артерии 30
Надежность, или о вязкости тканей животных 31
Строение мягких тканей 32
Часть III. Конструкции в условиях сжатия и изгиба 32
Глава 8 32
Стены, арки и плотины, или башни, уходящие в облака, и устойчивость каменной кладки 32
Линии давлений и устойчивость стен 33
Плотины 35
Арки 35
Масштаб, пропорции и надежность 36
О позвоночнике и скелете 37
Глава 9 37
Кое-что о мостах, или святой Бенезе и святой Изамбар 37
Арочные мосты 37
Чугунные мосты 38
Арочные мосты с подвесной проезжей частью 38
Подвесные мосты 38
Линия давления в арках и подвесных мостах 39
Мостовые фермы с верхним криволинейным поясом 39
Глава 10 40
Чем хороши балки, или о крышах, фермах и мачтах 40
Фермы перекрытий 41
Фермы в кораблестроении 42
Консоли и шарнирно опертые балки 43
Фермы мостов 44
Напряженное состояние балок 45
Продольные напряжения в изгибаемой балке 45
Глава 11 46
Тайны сдвига и кручения, или "Поларис" и вечерние туалеты 46
Терминология 46
Стенка балки в условиях сдвига - изотропные и анизотропные материалы 47
Касательное напряжение - это растяжение и сжатие, действующие под углом +45°, и наоборот 48
Складкообразование 48
Кручение 49
Центр изгиба и центр давления 49
Глава 12 51
Различные виды разрушения при сжатии, или сэндвичи, весла и Леонард Эйлер 51
Предел прочности на сжатие, или разрушение коротких стержней и колонн при сжатии 51
Сравнение прочности материалов на растяжение и на сжатие 52
Прочность дерева и композиционных материалов при сжатии 52
Леонард Эйлер и выпучивание тонких стержней и пластин 54
Трубы, корабли и бамбук, или кое-что о локальной потере устойчивости 55
Листья, сэндвичи и сотовые конструкции 55
Часть IV. И последствия были… 56
Глава 13 56
Философия конструирования, или форма, вес и стоимость 56
Проектирование конструкций, работающих на растяжение 56
Сравнения веса сжатых и растянутых конструкций 57
Масштабные эффекты, или еще раз о законе двух третей 58
Каркасные конструкции против монокока 58
Надувные конструкции 59
Колеса со спицами 59
О выборе лучшего материала, или что такое "лучший материал" 59
Материалы, топливо и энергия 60
Глава 14 61
Катастрофы, или очерк об ошибках, прегрешениях и усталости металла 61
О точности расчетов на прочность 61
Проектирование с помощью эксперимента 62
Сколько она будет служить? 62
Усталость металла, мистер Хани и пр. 63
Катастрофы деревянных кораблей 64
Еще о котлах, сосудах давления и о кипящем в них масле 64
О вырезании дыр 65
Об излишнем весе 66
Аэроупругость, или тростник, колеблемый на ветру 67
Проектирование как прикладная теология 67
Глава 15 68
Эффективность и эстетика, или мир, в котором мы должны жить 68
Об эффективности и функциональности 70
О стилях и напряжениях 72
Об имитации, подделках и украшениях 73
Приложения 73
Приложение 1. О справочниках и формулах 73
Приложения 2-4 74
Приложение 2. Теория изгиба балок 74
Приложение 3. Кручение 74
Приложение 4. Эффективность стержней (колонн) и пластин при сжатии 74
Рекомендации для дальнейших занятий 74