Конструкции, или почему не ломаются вещи | Страница 27 | Онлайн-библиотека


Выбрать главу

Каждая отдельная заклепка может чуть-чуть смещаться, ослабляя тем самым наихудшие последствия концентрации напряжений. Иногда целесообразно использовать соединение с несколькими заклепками, поставленными в ряд одна за другой, так как концевые заклепки могут испытать смещения, достаточные для того, чтобы после этого часть нагрузки могли принять на себя заклепки, стоящие посредине. После того как свежее заклепочное соединение двух стальных или железных пластин подверглось нагружению, которое в итоге привело к удовлетворительному распределению напряжений, положительную роль может сыграть ржавчина. Постепенно образующиеся продукты коррозии, оксиды и гидроксиды железа, расширяясь, как бы замыкают соединение и исключают проскальзывание соединяемых элементов относительно друг друга при разгрузке. Далее, ржавчина, подобно клею, частично передает сдвиговые усилия между пластинками, и поэтому со временем прочность заклепочного соединения внахлестку, как правило, повышается.

Отверстия под заклепки в больших стальных конструкциях, таких, как корабли и котлы, обычно пробивают. Хотя это быстрый и дешевый способ, он не вполне удовлетворителен, поскольку металл на краях отверстия становится хрупким и часто содержит небольшие трещины. А это уже плохо, так как в областях около отверстий заведомо будет возникать концентрация напряжении. Поэтому лучше пробивать отверстия меньшего размера, а затем их рассверливать. Хотя это увеличивает стоимость изделий, но в то же время прибавляет соединению прочность и надежность.

Заклепочные и болтовые соединения могут иметь самую разную форму и размеры, но возможные пути их разрушения сводятся к трем формам: сдвиг по самим заклепкам (рис. 45, а), заклепки вырываются из одной из пластинок (то есть круглые отверстия превращаются в удлиненные) (рис. 45, б), разрыв материала одной из пластинок вдоль линии заклепок - как при отрывании почтовой марки (рис. 45, в).

Рис. 45. Три возможных варианта разрушения заклепочного соединения. а - сдвиг по самим заклепкам; б - заклепки вырываются из одной пластинки; в - разрыв материала одной из пластинок.

Во всех случаях, когда используется заклепочное соединение, необходимо проверить с помощью расчетов, не разрушится ли оно каким-либо из этих трех путей. "Правила" проектирования заклепочных соединений можно найти почти во всех технических справочниках.

Сварные соединения

Сварка всех видов в настоящее время широко используется в стальных конструкциях. Она не только дешевле клепки, но и дает некоторый выигрыш в прочности и весе. Кроме того, на кораблях заклепочные головки, располагающиеся ниже ватерлинии, немного увеличивают сопротивление движению.

Наиболее сложной является электрическая дуговая сварка. Выполняя ее, сварщик посредством изолирующего зажима держит в правой руке стальной электрод, а в левой - защитный щиток или экран, снабженный очень темными стеклами, сквозь которые можно без вреда для зрения наблюдать за электрической дугой между концом электрода и выполняемым швом. При обычно используемом напряжении в 30-50 В дуга имеет длину около 7 мм, благодаря ей на конце электрода образуется небольшое количество расплавленного металла, которым сварщик заполняет шов, двигаясь вдоль соединения. В результате образуется непрерывная полоска - сварной шов шириной 5-10 мм, который застывает, образуя соединение. При необходимости увеличить ширину шва процесс повторяют несколько раз.

Сварка, выполненная надлежащим образом, как правило, очень прочна и служит надежно, но недостаточное мастерство или недостаточное внимание сварщика к работе влекут за собой дефекты сварных швов, к их числу принадлежат включения из шлака, которые уменьшают прочность соединения и наличие которых трудно проконтролировать. Неумелый сварщик легко может перегреть металл вокруг соединения, вызвав тем самым серьезные поводки конструкции. Это особенно часто происходит при сварке тяжелых и толстых деталей. Именно такого рода дефекты сварки в основаниях двигателей послужили причиной серьезных неприятностей с линкором "Граф Спи".

Теоретически сварные соединения в цистернах или корпусах судов должны быть полностью водонепроницаемы без дальнейшей их обработки, но на практике сварка в этом отношении доставляет больше хлопот, чем клепка. Заклепочное соединение внахлест можно легко герметизировать, зачеканив края нахлеста с помощью специального пневматического или ручного инструмента. Этого нельзя сделать в случае сварного соединения, между двумя сварными швами нахлеста рекомендуется ввести под давлением жидкую герметизирующую смесь. При всем том мне, помнится, пришлось повидать при испытаниях на водонепроницаемость помещений сварных кораблей немало течей.

В свое время мне довелось поработать несколько недель клепальщиком и сварщиком на одной из Королевских верфей, там я и научился кое-чему, чего, думаю, не найти в учебниках. Хотя вогнать пятисантиметровую заклепку в броневую плиту палубы корабля пневматическим молотком - тяжелая и шумная работа, это на удивление интересно, и большинство видов клепки, на мой взгляд, в некотором смысле столь же привлекательно, как и игра в гольф, с той лишь разницей, что клепка более полезна. Элементы спорта содержались, кроме того, и в контроле качества заклепок. В то время нам платили по числу поставленных заклепок, однако за каждую забракованную контролером заклепку, которую нужно было высверлить и заменить новой, вычитали в пятикратном размере.

Конечно, нельзя сказать, что клепальщики работали в раю, но что касается сварки, то она определенно была похожа на ад. Сварка может быть достаточно любопытным занятием в течение часа или двух (осмелюсь предположить, что на такие сроки любопытным может быть и ад), но по прошествии этого времени следить за шипящей и мерцающей дугой и струйкой стекающего расплавленного металла становится невыносимо скучно, и скуку не особенно развеивают искры и капельки металла, вдруг оказавшиеся у вас за шиворотом или в башмаках. Уже через несколько дней проклинаешь эту работу, и чувство скуки утверждается настолько прочно, что становится очень трудным сосредоточиться и сделать удовлетворительный шов.

В настоящее время сварные швы в трубах и сосудах высокого давления выполняют автоматы, которым, я думаю, не становится скучно, а потому эти швы обычно и надежны. Однако автоматическая сварка часто нерентабельна в случае больших конструкций, таких, как корабли и мосты, и здесь сварные швы нередко заставляют желать много лучшего. К тому же сварные швы почти не препятствуют распространению трещин, и это - одна из причин катастроф, которые произошли со многими большими стальными конструкциями в недавнее время.

Ползучесть

Гомер знал, что для того, чтобы подготовить колесницу к выезду, нужно было в первую очередь надеть на нее колеса.

Расшифровка удлиненной буквы Б Дж. Чедвик

У микенских и древнегреческих колесниц были очень легкие и гибкие колеса обычно только с четырьмя спицами, сделанные из тонкого изогнутого дерева - ивы, вяза или кипариса (рис. 46). Колеса такой конструкции были очень эластичными и, по-видмому, позволяли мчаться в этих повозках по пересеченным склонам греческих холмов, где экипажи с более тяжелыми и жесткими колесами были бы бесполезны. В самом деле, обод колеса под действием веса колесницы изгибается подобно луку, но так же как и лук не следует хранить с надетой на него тетивой, так и колеса древних колесниц не следовало оставлять под нагрузкой. Поэтому по вечерам колесницы либо запрокидывали и прислоняли к стене, как делал это Телемах в четвертой книге "Одиссеи", либо совсем снимали с них колеса. Даже на Олимпе богиня Геба по утрам прилаживала колеса к колеснице сероглазой Афины. Когда в более поздние времена колеса стали тяжелее, эта процедура перестала быть столь необходимой, хотя можно предположить, что колеса экипажа нынешних лорд-мэров имеют заметный эксцентриситет, так как они подолгу находятся под нагрузкой без движения.

27
От редактора перевода 1
Предисловие 1
Введение 1
Конструкции в нашей жизни, или как общаться с инженерами 1
Живые конструкции 2
Технические конструкции 2
Конструкции и эстетика 3
Теория упругости, или почему вещи все же ломаются 4
Часть I. Трудное рождение теории упругости 5
Глава 1 5
Почему конструкции выдерживают нагрузки, или упругость твердых тел 5
Закон Гука, или упругость твердых тел 6
Как теория упругости застыла на месте 6
Глава 2 7
Изобретение напряжения и деформации, или барон Коши и расшифровка модуля Юнга 7
Напряжение 7
Единицы напряжения 8
Деформация 8
Модуль Юнга, или какова жесткость данного материала? 8
Единицы измерения жесткости, или модуля Юнга 9
Фактические значения модуля Юнга 9
Прочность 9
Глава 3 10
Конструирование и безопасность, или можно ли доверять расчетам на прочность? 10
Французская теория и британский прагматизм 10
Коэффициент запаса и коэффициент незнания 11
Концентрация напряжений, или как "запустить" трещину 11
Глава 4 12
Упругая энергия и современная механика разрушения, с отступлениями о луках, катапультах и кенгуру 12
Энергетический подход к расчетам конструкций на прочность 13
Автомобили, лыжники и кенгуру 13
Луки 14
Катапульты 15
Эластичность, резильянс и ухабы на дорогах 16
Упругая энергия как причина разрушения 17
Энергия, или работа, разрушения 17
Гриффитс, или как жить в мире трещин и концентрации напряжений 18
"Мягкая" сталь и "высокопрочная" сталь 20
О хрупкости костей 20
Часть II. Конструкции, нагруженные растяжением 21
Глава 5 21
Растянутые конструкции и сосуды под давлением - о паровых котлах, летучих мышах и джонках 21
Трубы и сосуды высокого давления 22
Сферические сосуды высокого давления 22
Цилиндрические сосуды высокого давления 22
Китайская инженерия, или лучше прогнуться, чем лопнуть 23
Летучие мыши и птеродактили 23
Почему же птицы имеют перья? 24
Глава 6 24
О соединениях, креплениях и людях, а также о ползучести и колесах колесниц 24
Прочные соединения и человеческие слабости 25
Распределение напряжений в соединениях 26
Заклепочные соединения 26
Сварные соединения 27
Ползучесть 27
Глава 7 28
Мягкие материалы и живые конструкции, или как сконструировать червяка 28
Поверхностное натяжение 28
Поведение существующих в природе мягких тканей 29
Коэффициент Пуассона, или как работают наши артерии 30
Надежность, или о вязкости тканей животных 31
Строение мягких тканей 32
Часть III. Конструкции в условиях сжатия и изгиба 32
Глава 8 32
Стены, арки и плотины, или башни, уходящие в облака, и устойчивость каменной кладки 32
Линии давлений и устойчивость стен 33
Плотины 35
Арки 35
Масштаб, пропорции и надежность 36
О позвоночнике и скелете 37
Глава 9 37
Кое-что о мостах, или святой Бенезе и святой Изамбар 37
Арочные мосты 37
Чугунные мосты 38
Арочные мосты с подвесной проезжей частью 38
Подвесные мосты 38
Линия давления в арках и подвесных мостах 39
Мостовые фермы с верхним криволинейным поясом 39
Глава 10 40
Чем хороши балки, или о крышах, фермах и мачтах 40
Фермы перекрытий 41
Фермы в кораблестроении 42
Консоли и шарнирно опертые балки 43
Фермы мостов 44
Напряженное состояние балок 45
Продольные напряжения в изгибаемой балке 45
Глава 11 46
Тайны сдвига и кручения, или "Поларис" и вечерние туалеты 46
Терминология 46
Стенка балки в условиях сдвига - изотропные и анизотропные материалы 47
Касательное напряжение - это растяжение и сжатие, действующие под углом +45°, и наоборот 48
Складкообразование 48
Кручение 49
Центр изгиба и центр давления 49
Глава 12 51
Различные виды разрушения при сжатии, или сэндвичи, весла и Леонард Эйлер 51
Предел прочности на сжатие, или разрушение коротких стержней и колонн при сжатии 51
Сравнение прочности материалов на растяжение и на сжатие 52
Прочность дерева и композиционных материалов при сжатии 52
Леонард Эйлер и выпучивание тонких стержней и пластин 54
Трубы, корабли и бамбук, или кое-что о локальной потере устойчивости 55
Листья, сэндвичи и сотовые конструкции 55
Часть IV. И последствия были… 56
Глава 13 56
Философия конструирования, или форма, вес и стоимость 56
Проектирование конструкций, работающих на растяжение 56
Сравнения веса сжатых и растянутых конструкций 57
Масштабные эффекты, или еще раз о законе двух третей 58
Каркасные конструкции против монокока 58
Надувные конструкции 59
Колеса со спицами 59
О выборе лучшего материала, или что такое "лучший материал" 59
Материалы, топливо и энергия 60
Глава 14 61
Катастрофы, или очерк об ошибках, прегрешениях и усталости металла 61
О точности расчетов на прочность 61
Проектирование с помощью эксперимента 62
Сколько она будет служить? 62
Усталость металла, мистер Хани и пр. 63
Катастрофы деревянных кораблей 64
Еще о котлах, сосудах давления и о кипящем в них масле 64
О вырезании дыр 65
Об излишнем весе 66
Аэроупругость, или тростник, колеблемый на ветру 67
Проектирование как прикладная теология 67
Глава 15 68
Эффективность и эстетика, или мир, в котором мы должны жить 68
Об эффективности и функциональности 70
О стилях и напряжениях 72
Об имитации, подделках и украшениях 73
Приложения 73
Приложение 1. О справочниках и формулах 73
Приложения 2-4 74
Приложение 2. Теория изгиба балок 74
Приложение 3. Кручение 74
Приложение 4. Эффективность стержней (колонн) и пластин при сжатии 74
Рекомендации для дальнейших занятий 74