Конструкции, или почему не ломаются вещи | Страница 24 | Онлайн-библиотека


Выбрать главу

Примерно 30 млн лет назад на Земле обитало множество летающих существ, называемых птеродактилями (пальцекрылыми). Многие из них очень напоминают летучих мышей, за тем исключением, что у них только один "палец" - мизинец являлся частью конструкции, составляющей крыло. Перепончатое крыло птеродактиля похоже на бермудский грот-парус, не разделенный какими-либо рейками.

Некоторые из этих животных были очень велики. Туловище птеранодона, например, было восстановлено по ископаемым останкам и оказалось, что размах его крыльев достигал не менее 8 м (рис. 35). Он был около 3 м высотой, а его общий вес составлял, вероятно, только около 20 кг. Именно такой вес могла поднять летающая конструкция из костей и мышц. Недавно появились сообщения об открытии в Америке останков птеродактилей еще большего размера, с размахом крыльев вдвое больше, чем у птеранодона.

Рис. 35. Птеранодон.

Птеранодон, вероятно, искал свою добычу в море и, грубо говоря, занимал в экологической системе место, которое теперь занимает альбатрос. Как и альбатрос, он проводил большую часть времени в воздухе, паря над волнами, и добывал себе рыбу, не опускаясь на воду. Кости, на которых держались крылья этого ископаемого, были, судя по останкам, невероятно тонкими и слабыми даже по сравнению с костями плодоядной летучей мыши. Мы, конечно, не располагаем данными об упругости оболочки, покрывавшей эти огромные крылья, но можно предположить, что по своим свойствам она была похожа на перепонки летучих мышей. Аэродинамическая эффективность такой конструкции в целом должна была быть высокой, сравнимой с конструкцией современных альбатросов.

Почему же птицы имеют перья?

Хотя летучие мыши уцелели в процессе эволюции и сохранились до наших дней, место птеродактилей очень давно заняли птицы, имеющие перья. Возможно, конечно, что причины исчезновения птеродактилей не связаны с их конструкцией, но в то же время не исключено, что именно перья дали птицам преимущества перед другими летающими существами. Когда я работал в Фарнборо, я имел обыкновение время от времени спрашивать свое начальство: не лучше было бы, если бы самолет имел перья? Однако мне редко удавалось не только получить спокойный ответ, но и просто удостоиться того, чтобы меня терпеливо выслушали.

И все же почему птицы все-таки имеют перья? Современный инженер, если бы ему пришлось самому сконструировать летающее существо, создал бы, вероятно, что-нибудь вроде летучей мыши или летающего насекомого. Я не думаю, что ему пришло бы в голову изобрести птиц. Однако, по-видимому, на то, что они существуют, имеются веские причины. Можно предположить, что летучие мыши, как и в прошлом птеродактили, теряют значительное количество энергии в форме тепла, исходящего от их крыльев, и если бы их крылья были покрыты шерстью, это обепечило бы им эффективную теплоизоляцию.

Возможно, именно это и произошло на ранних стадиях эволюции птиц, поскольку перья, подобно рогам и когтям, развились из шерсти. Однако шерсть, по-видимому, тем лучше, чем она мягче, так что кератин, из которого она состоит, имеет очень малый модуль Юнга.

В перьях же молекулы кератина становятся жестче за счет образования поперечных связей между молекулярными цепочками атомов серы. (Характерный запах горящих перьев вызывается присутствием серы.)

Перья, несомненно, дают и аэродинамические преимущества, что связано с широким разнообразием очертаний тела, которые можно придать оперенному существу. Так, толстое крыло с большим поперечным сечением нередко с аэродинамической точки зрения более эффективно, чем тонкое, соответствующее перепонке. Толстое крыло нужного профиля легко составить из слоев перьев без заметного увеличения веса. Далее, перья лучше, чем перепонки и кости, приспособлены для создания различных "щелей" и "закрылков", препятствующих срыву потока воздуха.

Однако я склонен думать, что главное преимущество, которое дает оперение, - это преимущество конструкционного характера. Тот, кто запускал модели самолетов, знает, насколько легко эти малые летательные аппараты получают повреждения от случайных столкновений с деревьями и кустами или просто из-за неосторжного обращения с ними. Птицы же постоянно летают среди деревьев, изгородей и других препятствий, часто используя их как укрытие от своих врагов. Для большинства видов птиц не страшна потеря даже значительного количества перьев. Лучше оставить кота с полной пастью перьев, чем оказаться у него в зубах.

Перья не только помогают птицам избежать царапин, они образуют толстый упругий панцирь, который служит защитой и от более серьезных повреждений. Японские доспехи из перьев, которые можно видеть в музеях, - это отнюдь не живописная бутафория диких людей. Они служили надежной защитой от такого оружия, как сабля. Не случайно финны использовали для обшивки своих бронепоездов кипы бумаги, а летчиков-истребителей защищают от осколков многослойные целлофановые прокладки. Сокол убивает в воздухе птицу отнюдь не клювом или когтями - вряд ли они смогли бы проникнуть сквозь перья, - а ударом вытянутых лап в спину, сообщая ей большое ускорение как целому, в результате чего птица ломает себе шею; нечто похожее происходит при казни через повешение.

Строение и общее устройство перьев представляются исключительно интересными. Перьям, вероятно, не требуется быть особенно прочными, но они должны быть одновременно и жесткими, и эластичными, а кроме того, работа разрушения пера должна быть велика. Механизм разрушения пера представляется чем-то таинственным; во всяком случае, к моменту написания этой книги, я думаю, никто не знал, каким образом оно разрушается. Как и во многих других случаях, механизм разрушения пера чувствителен к самым незначительным изменениям в состоянии материала. Тот, кто держал охотничьих соколов, знает, что эти умные, требовательные и капризные птицы могут очень легко "терять форму". Иногда, даже если их кормят и содержат должным образом, их перья становятся хрупкими и часто ломаются. "Лечение" в этих случаях состоит в соединении частей сломавшегося пера путем "прививки". Ее делают, вставляя заостренную с двух сторон "иглу" с небольшим количеством клея в ствол пера вблизи места разлома. Детали этой процедуры описаны в книгах о соколиной охоте XVI в.

Если принять во внимание, как часто автомашины получают вмятины и царапины и как дорого это обходится, то можно спросить себя, не следует ли в этом вопросе поучиться у птиц. Кстати, мне говорили, что поскольку американская армия практически посажена на питание цыплятами, в США получают огромные количества пера. Было бы неплохо найти для него применение.

Глава 6

О соединениях, креплениях и людях, а также о ползучести и колесах колесниц

А теперь я хочу рассказать вам историю о корабле, построенном во время войны. Это был пароход, и он был построен из дерева - из хорошего дерева, и люди, которые его строили, тоже были хорошими и знающими мастерами… Он двигался как человек, несущий слишком большую тяжесть, а вскоре его движение стало прерывистым, он стал дрожать и качаться (на море была только легкая зыбь), потом опрокинулся набок и развалился, как старая корзина, на которую кто-то наступил. Через пять минут от него не осталось ничего, кроме пятен угольной пыли на воде да нескольких балок и одного или двух барахтавшихся среди всего этого случайно уцелевших людей.

Это правдивая история. И я хочу только добавить, что этот корабль был построен плотниками - мастерами, строящими дома, - береговыми плотниками, а не корабельными мастерами.

Моряк из южных морей Вестон Мартир

Пароход, о котором говорится в истории Вестона Мартира, затонул, затонул довольно неожиданно, и случилось это оттого, что слишком слабыми оказались соединения его деревянных деталей, хотя строившие судно плотники - люди добросовестные, но до того имевшие дело лишь с домами, - были, вероятно, довольны делом своих рук. Действительно, когда плотник строит дом или столяр делает мебель, они обычно применяют такие способы соединения деталей, которые корабелы сочли бы непрочными и весьма неэффективными. Соединения эти на самом деле нельзя назвать прочными, а являются ли они "неэффективными", зависит от того, где мы их используем. Ведь цели, которые преследуют строители домов, далеко не всегда совпадают с целями строителей кораблей и самолетов.

24
От редактора перевода 1
Предисловие 1
Введение 1
Конструкции в нашей жизни, или как общаться с инженерами 1
Живые конструкции 2
Технические конструкции 2
Конструкции и эстетика 3
Теория упругости, или почему вещи все же ломаются 4
Часть I. Трудное рождение теории упругости 5
Глава 1 5
Почему конструкции выдерживают нагрузки, или упругость твердых тел 5
Закон Гука, или упругость твердых тел 6
Как теория упругости застыла на месте 6
Глава 2 7
Изобретение напряжения и деформации, или барон Коши и расшифровка модуля Юнга 7
Напряжение 7
Единицы напряжения 8
Деформация 8
Модуль Юнга, или какова жесткость данного материала? 8
Единицы измерения жесткости, или модуля Юнга 9
Фактические значения модуля Юнга 9
Прочность 9
Глава 3 10
Конструирование и безопасность, или можно ли доверять расчетам на прочность? 10
Французская теория и британский прагматизм 10
Коэффициент запаса и коэффициент незнания 11
Концентрация напряжений, или как "запустить" трещину 11
Глава 4 12
Упругая энергия и современная механика разрушения, с отступлениями о луках, катапультах и кенгуру 12
Энергетический подход к расчетам конструкций на прочность 13
Автомобили, лыжники и кенгуру 13
Луки 14
Катапульты 15
Эластичность, резильянс и ухабы на дорогах 16
Упругая энергия как причина разрушения 17
Энергия, или работа, разрушения 17
Гриффитс, или как жить в мире трещин и концентрации напряжений 18
"Мягкая" сталь и "высокопрочная" сталь 20
О хрупкости костей 20
Часть II. Конструкции, нагруженные растяжением 21
Глава 5 21
Растянутые конструкции и сосуды под давлением - о паровых котлах, летучих мышах и джонках 21
Трубы и сосуды высокого давления 22
Сферические сосуды высокого давления 22
Цилиндрические сосуды высокого давления 22
Китайская инженерия, или лучше прогнуться, чем лопнуть 23
Летучие мыши и птеродактили 23
Почему же птицы имеют перья? 24
Глава 6 24
О соединениях, креплениях и людях, а также о ползучести и колесах колесниц 24
Прочные соединения и человеческие слабости 25
Распределение напряжений в соединениях 26
Заклепочные соединения 26
Сварные соединения 27
Ползучесть 27
Глава 7 28
Мягкие материалы и живые конструкции, или как сконструировать червяка 28
Поверхностное натяжение 28
Поведение существующих в природе мягких тканей 29
Коэффициент Пуассона, или как работают наши артерии 30
Надежность, или о вязкости тканей животных 31
Строение мягких тканей 32
Часть III. Конструкции в условиях сжатия и изгиба 32
Глава 8 32
Стены, арки и плотины, или башни, уходящие в облака, и устойчивость каменной кладки 32
Линии давлений и устойчивость стен 33
Плотины 35
Арки 35
Масштаб, пропорции и надежность 36
О позвоночнике и скелете 37
Глава 9 37
Кое-что о мостах, или святой Бенезе и святой Изамбар 37
Арочные мосты 37
Чугунные мосты 38
Арочные мосты с подвесной проезжей частью 38
Подвесные мосты 38
Линия давления в арках и подвесных мостах 39
Мостовые фермы с верхним криволинейным поясом 39
Глава 10 40
Чем хороши балки, или о крышах, фермах и мачтах 40
Фермы перекрытий 41
Фермы в кораблестроении 42
Консоли и шарнирно опертые балки 43
Фермы мостов 44
Напряженное состояние балок 45
Продольные напряжения в изгибаемой балке 45
Глава 11 46
Тайны сдвига и кручения, или "Поларис" и вечерние туалеты 46
Терминология 46
Стенка балки в условиях сдвига - изотропные и анизотропные материалы 47
Касательное напряжение - это растяжение и сжатие, действующие под углом +45°, и наоборот 48
Складкообразование 48
Кручение 49
Центр изгиба и центр давления 49
Глава 12 51
Различные виды разрушения при сжатии, или сэндвичи, весла и Леонард Эйлер 51
Предел прочности на сжатие, или разрушение коротких стержней и колонн при сжатии 51
Сравнение прочности материалов на растяжение и на сжатие 52
Прочность дерева и композиционных материалов при сжатии 52
Леонард Эйлер и выпучивание тонких стержней и пластин 54
Трубы, корабли и бамбук, или кое-что о локальной потере устойчивости 55
Листья, сэндвичи и сотовые конструкции 55
Часть IV. И последствия были… 56
Глава 13 56
Философия конструирования, или форма, вес и стоимость 56
Проектирование конструкций, работающих на растяжение 56
Сравнения веса сжатых и растянутых конструкций 57
Масштабные эффекты, или еще раз о законе двух третей 58
Каркасные конструкции против монокока 58
Надувные конструкции 59
Колеса со спицами 59
О выборе лучшего материала, или что такое "лучший материал" 59
Материалы, топливо и энергия 60
Глава 14 61
Катастрофы, или очерк об ошибках, прегрешениях и усталости металла 61
О точности расчетов на прочность 61
Проектирование с помощью эксперимента 62
Сколько она будет служить? 62
Усталость металла, мистер Хани и пр. 63
Катастрофы деревянных кораблей 64
Еще о котлах, сосудах давления и о кипящем в них масле 64
О вырезании дыр 65
Об излишнем весе 66
Аэроупругость, или тростник, колеблемый на ветру 67
Проектирование как прикладная теология 67
Глава 15 68
Эффективность и эстетика, или мир, в котором мы должны жить 68
Об эффективности и функциональности 70
О стилях и напряжениях 72
Об имитации, подделках и украшениях 73
Приложения 73
Приложение 1. О справочниках и формулах 73
Приложения 2-4 74
Приложение 2. Теория изгиба балок 74
Приложение 3. Кручение 74
Приложение 4. Эффективность стержней (колонн) и пластин при сжатии 74
Рекомендации для дальнейших занятий 74