Конструкции, или почему не ломаются вещи | Страница 21 | Онлайн-библиотека


Выбрать главу

Часть II. Конструкции, нагруженные растяжением

Глава 5

Растянутые конструкции и сосуды под давлением - о паровых котлах, летучих мышах и джонках

Корабль определенно двигался быстрей, и паруса лучше держали ветер, но как раз в этот момент ураган усилился. "Если что-нибудь случится с парусами, мы пропали, сэр", - снова произнес первый помощник.

"Я отдаю себе в этом полный отчет, - холодно ответил капитан, - но, как я уже говорил, и вы должны теперь это сознавать, паруса - наш единственный шанс. Всякая небрежность и беззаботность в подгонке и закреплении оснастки не останется теперь безнаказанной, и пусть эта опасность, если нам удастся спастись, послужит нам постоянным напоминанием о том, как дорого приходится платить за пренебрежение своим долгом".

Питер Симпл Капитан Мэриет

Наиболее простыми для рассмотрения являются, вообще говоря, такие конструкции, которые должны оказывать сопротивление только растягивающим нагрузкам - силам, возникающим, когда тянут, а не когда толкают. Из этих конструкций самыми простыми являются те, которые растягиваются только в одном определенном направлении; типичным случаем таких конструкций может быть веревка или стержень. Хотя такие одноосные нагружения можно наблюдать у растений, особенно в их корнях, лучше рассмотреть другие биологические конструкции - мышцы и сухожилия животных, голосовые связки и сплетаемую пауком паутину.

Мышцы - это мягкая ткань, которая при получении соответствующего нервного сигнала способна сокращаться и таким образом создавать силы растяжения. Но хотя мышцы представляют собой более эффективное устройство для преобразования химической энергии в механическую работу, чем любая созданная человеком машина, они не очень сильны и прочны. Поэтому, чтобы создавать и выдерживать значительные механические натяжения, мышцы должны быть толстыми и иметь большой объем. Отчасти по этой причине во многих случаях мышцы соединяются с костями, которыми они управляют, посредством промежуточных соединительных звеньев, похожих на струны и состоящих из сухожилий. Хотя сухожилия сами сокращаться не способны, они во много раз прочнее мышц, и поэтому для того, чтобы передать заданную растягивающую силу, достаточно, чтобы их поперечное сечение составляло лишь небольшую часть сечения мышц. Таким образом, задача сухожилий близка к задаче, которую обычно выполняют веревки и проволока, хотя, как мы видели в предыдущей главе, они могут работать и как пружины.

Некоторые сухожилия очень короткие, а некоторые - весьма длинные, и все они проходят по телу не менее сложным образом, чем проволочки в старомодной викторианской системе колоколов. Особенно длинны сухожилия рук и ног. Мышцы ног не только велики, но и тяжелы, поэтому целесообразно, чтобы центр тяжести ног располагался как можно выше. Дело в том, что при нормальной ходьбе нога действует подобно маятнику, колеблясь с присущим ей периодом свободных колебаний и расходуя предельно мало энергии. Бег гораздо утомительнее именно оттого, что мы заставляем ноги колебаться с частотой, большей, чем их собственная частота свободных колебаний. Но собственная частота колебаний ноги будет тем выше, чем ближе центр тяжести ноги к тазобедренному суставу. Поэтому у нас массивные икры и бедра и, к счастью, небольшие ступни и лодыжки.

Однако не меньшей помехой в жизни, чем большие ступни, были бы большие кисти рук (хотя кто-то может сказать, что только не для полисменов). Наши руки, конечно, произошли от передних ног, и идея "дистанционного" управления движением рук реализована с еще большей полнотой, чем в случае ног. С помощью сухожилий, даже более длинных и тонких, чем у ног, кисти и пальцы управляются мышцами, расположенными в предплечьях, то есть на очень большом расстоянии. За счет этого кисть оказывается значительно более тонкой, чем в случае, если бы в ней находились и все управляющие ею мышцы. Преимущества существующего в действительности расположения мышц с механической, а возможно, и с эстетической точки зрения очевидны.

Много простых примеров одноосного растяжения встречается и в конструкциях, созданных человеком; так, к числу их принадлежат рыболовная леска и трос подъемного крана. Эти случаи мало отличаются от задачи о висящем на веревке кирпиче, обсуждавшейся нами в гл. 2. А вот такие случаи, как сооружение парусной оснастки корабля или проектирование линий электропередач, гораздо интереснее и сложнее.

Расчет оснастки корабля - выбор необходимой толщины каждого каната - не вызвал бы никаких трудностей, если было бы известно, какие нагрузки придется выдерживать канатам. Здесь сложность состоит в том, чтобы не ошибиться при определении тех сил, которые действуют в столь сложной системе, как парусный корабль. Хотя существует несколько путей решения этой задачи, я сильно подозреваю, что большинство конструкторов яхт предпочитают строить свои расчеты на догадках бывалых людей. Однако догадки хороши только тогда, когда они оказываются правильными, в противном случае это скорее всего приведет к потере мачты.Если такое случается, когда кораблю угрожают опасные подветренные берега (как в случае фрегата Мэриета), последствия могут оказаться более чем серьезными.

Сегодня увлечение горными лыжами породило огромную международную индустрию, зависящую от исправной работы многих тысяч подъемников и канатных дорог. Большинству из тех, кто оказывается над пугающей бездной, я думаю, не безразлична прочность стальных канатов, на которых держится вагончик канатной дороги или кресло подъемника. Такие канаты рвутся очень редко, поскольку возникающие в этом случае статические нагрузки определяются с большой точностью, и не представляет труда произвести расчеты и гарантировать достаточный запас прочности. Более серьезную опасность представляет сильное раскачивание канатов на ветру, поскольку при этом вагончики могут удариться друг о друга или о поддерживающую опору. Проектировщики же и в этом случае, по-видимому, основываются главным образом на догадках и прецедентах.

Совсем иное применение одноосного растяжения мы видим в музыкальных инструментах. Высота звука, издаваемого натянутой струной, зависит не только от ее длины, но также и от напряжений растяжения в ней.

В струнных инструментах соответствующие напряжения создаются путем натягивания струн из жесткого материала, стальной проволоки или сухожилий на подходящую раму, которой может служить гриф скрипки или чугунная станина фортепиано. Поскольку жесткими являются и струна, и рама, весьма небольшое удлинение сильно меняет напряжение в струне и, следовательно, высоту звука. Именно поэтому такие инструменты очень чувствительны к настройке. Если аналогичным образом заставить звучать, словно струну, натянутую веревку, то по высоте звука можно определить напряжение материала. У древних римлян командир боевой катапульты должен был иметь хороший музыкальный слух, чтобы на слух определять, с какой силой натянуты канаты из сухожилий при подготовке к бою.

Хотя устройство, которым наделила человека природа, позволяющее издавать звуки, во многих отношениях отличается от струнных инструментов, принцип его действия аналогичен принципу действия последних. Механизмы работы этого устройства довольно сложны, но и в пении, и в речи человека существенное участие принимает гортань. Интересно отметить, что различные ткани, из которых состоит гортань, относятся к небольшому числу мягких тканей человеческого тела, поведение которых более или менее подчиняется закону Гука; большинство же других тканей человеческого тела, как мы увидим в гл. 7, подчиняется своим собственным, совершенно иным и не всегда ясным законам.

Гортань содержит так называемые голосовые связки. Это полосы, или складки, ткани, напряжение в которой может изменяться с помощью мышечных натяжений, что позволяет управлять частотой вибрации голосовых связок. Поскольку модуль Юнга голосовых связок довольно низок, для возникновения в них нужных напряжений они иногда должны испытывать большие деформации. Так, когда мы хотим получить звук большой высоты, они должны удлиниться на 50 и более процентов.

21
От редактора перевода 1
Предисловие 1
Введение 1
Конструкции в нашей жизни, или как общаться с инженерами 1
Живые конструкции 2
Технические конструкции 2
Конструкции и эстетика 3
Теория упругости, или почему вещи все же ломаются 4
Часть I. Трудное рождение теории упругости 5
Глава 1 5
Почему конструкции выдерживают нагрузки, или упругость твердых тел 5
Закон Гука, или упругость твердых тел 6
Как теория упругости застыла на месте 6
Глава 2 7
Изобретение напряжения и деформации, или барон Коши и расшифровка модуля Юнга 7
Напряжение 7
Единицы напряжения 8
Деформация 8
Модуль Юнга, или какова жесткость данного материала? 8
Единицы измерения жесткости, или модуля Юнга 9
Фактические значения модуля Юнга 9
Прочность 9
Глава 3 10
Конструирование и безопасность, или можно ли доверять расчетам на прочность? 10
Французская теория и британский прагматизм 10
Коэффициент запаса и коэффициент незнания 11
Концентрация напряжений, или как "запустить" трещину 11
Глава 4 12
Упругая энергия и современная механика разрушения, с отступлениями о луках, катапультах и кенгуру 12
Энергетический подход к расчетам конструкций на прочность 13
Автомобили, лыжники и кенгуру 13
Луки 14
Катапульты 15
Эластичность, резильянс и ухабы на дорогах 16
Упругая энергия как причина разрушения 17
Энергия, или работа, разрушения 17
Гриффитс, или как жить в мире трещин и концентрации напряжений 18
"Мягкая" сталь и "высокопрочная" сталь 20
О хрупкости костей 20
Часть II. Конструкции, нагруженные растяжением 21
Глава 5 21
Растянутые конструкции и сосуды под давлением - о паровых котлах, летучих мышах и джонках 21
Трубы и сосуды высокого давления 22
Сферические сосуды высокого давления 22
Цилиндрические сосуды высокого давления 22
Китайская инженерия, или лучше прогнуться, чем лопнуть 23
Летучие мыши и птеродактили 23
Почему же птицы имеют перья? 24
Глава 6 24
О соединениях, креплениях и людях, а также о ползучести и колесах колесниц 24
Прочные соединения и человеческие слабости 25
Распределение напряжений в соединениях 26
Заклепочные соединения 26
Сварные соединения 27
Ползучесть 27
Глава 7 28
Мягкие материалы и живые конструкции, или как сконструировать червяка 28
Поверхностное натяжение 28
Поведение существующих в природе мягких тканей 29
Коэффициент Пуассона, или как работают наши артерии 30
Надежность, или о вязкости тканей животных 31
Строение мягких тканей 32
Часть III. Конструкции в условиях сжатия и изгиба 32
Глава 8 32
Стены, арки и плотины, или башни, уходящие в облака, и устойчивость каменной кладки 32
Линии давлений и устойчивость стен 33
Плотины 35
Арки 35
Масштаб, пропорции и надежность 36
О позвоночнике и скелете 37
Глава 9 37
Кое-что о мостах, или святой Бенезе и святой Изамбар 37
Арочные мосты 37
Чугунные мосты 38
Арочные мосты с подвесной проезжей частью 38
Подвесные мосты 38
Линия давления в арках и подвесных мостах 39
Мостовые фермы с верхним криволинейным поясом 39
Глава 10 40
Чем хороши балки, или о крышах, фермах и мачтах 40
Фермы перекрытий 41
Фермы в кораблестроении 42
Консоли и шарнирно опертые балки 43
Фермы мостов 44
Напряженное состояние балок 45
Продольные напряжения в изгибаемой балке 45
Глава 11 46
Тайны сдвига и кручения, или "Поларис" и вечерние туалеты 46
Терминология 46
Стенка балки в условиях сдвига - изотропные и анизотропные материалы 47
Касательное напряжение - это растяжение и сжатие, действующие под углом +45°, и наоборот 48
Складкообразование 48
Кручение 49
Центр изгиба и центр давления 49
Глава 12 51
Различные виды разрушения при сжатии, или сэндвичи, весла и Леонард Эйлер 51
Предел прочности на сжатие, или разрушение коротких стержней и колонн при сжатии 51
Сравнение прочности материалов на растяжение и на сжатие 52
Прочность дерева и композиционных материалов при сжатии 52
Леонард Эйлер и выпучивание тонких стержней и пластин 54
Трубы, корабли и бамбук, или кое-что о локальной потере устойчивости 55
Листья, сэндвичи и сотовые конструкции 55
Часть IV. И последствия были… 56
Глава 13 56
Философия конструирования, или форма, вес и стоимость 56
Проектирование конструкций, работающих на растяжение 56
Сравнения веса сжатых и растянутых конструкций 57
Масштабные эффекты, или еще раз о законе двух третей 58
Каркасные конструкции против монокока 58
Надувные конструкции 59
Колеса со спицами 59
О выборе лучшего материала, или что такое "лучший материал" 59
Материалы, топливо и энергия 60
Глава 14 61
Катастрофы, или очерк об ошибках, прегрешениях и усталости металла 61
О точности расчетов на прочность 61
Проектирование с помощью эксперимента 62
Сколько она будет служить? 62
Усталость металла, мистер Хани и пр. 63
Катастрофы деревянных кораблей 64
Еще о котлах, сосудах давления и о кипящем в них масле 64
О вырезании дыр 65
Об излишнем весе 66
Аэроупругость, или тростник, колеблемый на ветру 67
Проектирование как прикладная теология 67
Глава 15 68
Эффективность и эстетика, или мир, в котором мы должны жить 68
Об эффективности и функциональности 70
О стилях и напряжениях 72
Об имитации, подделках и украшениях 73
Приложения 73
Приложение 1. О справочниках и формулах 73
Приложения 2-4 74
Приложение 2. Теория изгиба балок 74
Приложение 3. Кручение 74
Приложение 4. Эффективность стержней (колонн) и пластин при сжатии 74
Рекомендации для дальнейших занятий 74