Конструкции, или почему не ломаются вещи | Страница 16 | Онлайн-библиотека


Выбрать главу

Рис. 19. Требюше, или средневековая катапульта, - самое неэффективное из метательных устройств.

В этом устройстве, похожем на маятник, использовалась потенциальная энергия поднятого груза. Даже с помощью большого требюше вряд ли можно было поднять груз более тонны (10000 Н) на высоту 3 м. Поэтому наибольшая запасаемая потенциальная энергия, вероятно, не намного превосходила 30000 Дж. Такое же количество энергии можно запасти в виде упругой энергии в 10-12 кг сухожилий. Поэтому даже большое требюше, вероятно, обладало только одной десятой энергии катапульты. К тому же, по-видимому, значительно более низкой была эффективность передачи энергии. С помощью требюше можно было в лучшем случае причинить неприятности путем забрасывания через крепостные стены больших камней; любая же попытка повредить мощную каменную кладку не имела бы успеха.

Принцип действия лука и палинтонона как устройств для передачи энергии одинаков, и пока еще в полной мере не нашла оценки эффективность такого механизма обмена энергией. В примитивных устройствах типа требюше значительная часть запасенной энергии шла на ускорение тяжелого противовеса и рычага и в конечном итоге терялась в системе останова или тормозов, которые были неотъемлемой частью устройства. У лука или палинтонона непосредственно после спуска тетивы часть запасенной упругой энергии передается в виде кинетической энергии прямо снаряду. Однако большая часть имеющейся энергии идет на ускорение самого лука или рычагов катапульты, где она временно переходит в кинетическую энергию. Это близко к тому, что происходит в требюше, однако здесь дальнейшие события связаны с замедлением движения самого лука, а не с жестким остановом. По мере того как лук распрямляется, увеличивается натяжение тетивы, что позволяет ей действовать на снаряд с большей силой и таким образом ускорять его движение. Поэтому значительная часть кинетической энергии, запасаемой в луке или в рычагах катапульты, передается снаряду (рис. 20).

Рис. 20. Схемы, иллюстрирующие механику палинтоноса, или баллисты. a - машина подготовлена к стрельбе, вся энергия запасена в связках сухожилий; б - начальная стадия: тяжелые рычаги получают ускорение, отбирая при этом значительную часть энергии сухожилий; в - заключительная стадия: тяжелые рычаги замедляют ход благодаря натяжению тетивы, таким образом их кинетическая энергия передается снаряду; г - летящий снаряд получил энергию, первоначально запасенную в системе.

Математическое описание поведения луков и катапульт оказывается сложным, и, даже записав соответствующие уравнения движения, их нельзя решить аналитически. К счастью, однако, один из моих коллег, д-р А. Претлав, заинтересовавшись этой проблемой, применил для ее решения ЭВМ. К удивлению, оказалось, что процесс передачи энергии теоретически может иметь 100%-ную эффективность. Другими словами, практически вся упругая энергия, запасенная в устройстве, может быть превращена в кинетическую энергию снаряда. Таким образом, теряется (идет на отдачу и на соударения в системе) только малая часть энергии. В этом отношении луки и катапульты обладают преимуществами перед огнестрельным оружием.

Одно следствие из этих фактов, я думаю, хорошо известно большинству стрелков-лучников. Оно состоит в том, что при стрельбе из лука или катапульты ни в коем случае не следует пользоваться несоответствующей стрелой или снарядом. Такая попытка неминуемо закончится не только поломкой лука, но и травмой, так как в этом случае не существует безопасных каналов освобождения запасенной упругой энергии.

Эластичность, резильянс и ухабы на дорогах

Корабль взрезает равнину вод, А ветер мчит вперед, Наполнив белые паруса, Красавицы-мачты гнет. Алан Канинхэм

Когда Галилей в 1633 г. в Арцетри приступил к изучению проблем упругости, прежде всего он задался вопросами, какие факторы влияют на прочность веревки или бруска при растяжении и зависит ли прочность от длины этой веревки или бруска. Элементарные эксперименты показали, что сила или вес, требуемые для разрыва однородной веревки при ее статическом растяжении, не зависят от длины этой веревки. Такой же результат, казалось бы, подсказывает и здравый смысл, однако и по сей день можно встретить множество людей, глубоко убежденных в том, что длинный кусок веревки "крепче" короткого.

Конечно, дело здесь не в человеческой глупости, а в том, что понимать под словом "крепче". Статическая сила, или натяжение, требуемое для разрыва длинной веревки, будет, конечно, той же, что и для разрыва короткой веревки, но общее удлинение большой веревки перед ее разрывом будет значительнее и, чтобы разорвать ее, потребуется большая энергия, хотя разрушающая сила и прочность материала остаются теми же. Рассуждая немного иначе, можно сказать, что длинная веревка будет смягчать внезапные рывки, упруго растягиваясь под действием нагрузки, так что возникающие при этом перегрузки будут уменьшаться. Другими словами, она действует в значительной степени так же, как подвеска автомобиля.

Таким образом, в тех случаях, когда нагрузка действует рывками, длинная веревка может действительно оказаться "крепче" короткой. Именно поэтому экипажи XVIII в. часто подвешивались к ходовой части на длинных кожаных ремнях, которые лучше коротких могли противостоять толчкам и ударам на рытвинах тогдашних дорог. Припомните к тому же, что якорные цепи и буксирные канаты стараются делать по возможности длиннее, так как они обычно рвутся не от статической нагрузки, а от резких толчков. Тем, кто может ночью или в тумане повстречаться в море с буксируемыми большим сухими доками или буровыми вышками, полезно иметь в виду, что эти сооружения буксируются на стальном тросе длиной почти в милю. Такого рода "морские процессии", занимая огромные участки моря, вселяют ужас в случайных мореплавателей.

Способность запасать упругую энергию и при действии нагрузки отклоняться упругим образом без разрушения называется резильянсом и является очень ценным качеством конструкции. Резильянс можно определить как количество упругой энергии, которое можно запасти в конструкции, не причиняя ей повреждений.

Чтобы добиться высокого резильянса, конечно, не обязательно использовать очень длинную веревку или проволочный трос. Зачастую удобнее применять более короткие конструкционные элементы, такие, как спиральные пружины (в буферах железнодорожных составов) или прокладки из мягких материалов (в качестве отбойных амортизаторов судов), а также материалы с малым модулем Юнга типа пенорезины или пенопласта (для упаковки точной аппаратуры). Все они могут испытывать большие относительные удлинения и сжатия, а поэтому способны запасать большую упругую энергию на единицу объема. Природная "подвеска" лыжников и животных своим совершенством в значительной мере обязана сравнительно низким модулям упругости и большой деформативности сухожилий и других тканей.

С другой стороны, хотя низкая жесткость и высокая растяжимость способствуют поглощению энергии и поэтому уменьшают возможность разрушения конструкции при ударе, может оказаться, что обладающая этими качествами конструкция будет слишком "мягкой" для выполнения своих функций. Такого рода соображения обычно ограничивают величину резильянса, которым можно снабдить конструкцию. Самолеты, здания, инструменты, оружие должны быть достаточно жесткими, чтобы выполнять свое назначение, поэтому в конструкциях стараются достигнуть компромисса между жесткостью, прочностью и резильянсом. Здесь-то и должен приложить свое искусство конструктор.

Оптимальные условия могут изменяться не только в зависимости от типа и класса конструкции, но и при переходе в ней от одного элемента к другому. Природа и здесь имеет преимущество, поскольку в ее распоряжении находится огромный диапазон упругих свойств различных биологических тканей. Простым, но интересным примером служит обычная паутина. Она подвержена ударным нагрузкам, создаваемым попадающими в нее мухами, и энергия возникающих ударов должна быть поглощена эластичными нитями. Оказывается, что длинные радиальные нити, на которые падает основная нагрузка, втрое жестче коротких круговых нитей, назначение которых ограничивается лишь ловлей мух.

16
От редактора перевода 1
Предисловие 1
Введение 1
Конструкции в нашей жизни, или как общаться с инженерами 1
Живые конструкции 2
Технические конструкции 2
Конструкции и эстетика 3
Теория упругости, или почему вещи все же ломаются 4
Часть I. Трудное рождение теории упругости 5
Глава 1 5
Почему конструкции выдерживают нагрузки, или упругость твердых тел 5
Закон Гука, или упругость твердых тел 6
Как теория упругости застыла на месте 6
Глава 2 7
Изобретение напряжения и деформации, или барон Коши и расшифровка модуля Юнга 7
Напряжение 7
Единицы напряжения 8
Деформация 8
Модуль Юнга, или какова жесткость данного материала? 8
Единицы измерения жесткости, или модуля Юнга 9
Фактические значения модуля Юнга 9
Прочность 9
Глава 3 10
Конструирование и безопасность, или можно ли доверять расчетам на прочность? 10
Французская теория и британский прагматизм 10
Коэффициент запаса и коэффициент незнания 11
Концентрация напряжений, или как "запустить" трещину 11
Глава 4 12
Упругая энергия и современная механика разрушения, с отступлениями о луках, катапультах и кенгуру 12
Энергетический подход к расчетам конструкций на прочность 13
Автомобили, лыжники и кенгуру 13
Луки 14
Катапульты 15
Эластичность, резильянс и ухабы на дорогах 16
Упругая энергия как причина разрушения 17
Энергия, или работа, разрушения 17
Гриффитс, или как жить в мире трещин и концентрации напряжений 18
"Мягкая" сталь и "высокопрочная" сталь 20
О хрупкости костей 20
Часть II. Конструкции, нагруженные растяжением 21
Глава 5 21
Растянутые конструкции и сосуды под давлением - о паровых котлах, летучих мышах и джонках 21
Трубы и сосуды высокого давления 22
Сферические сосуды высокого давления 22
Цилиндрические сосуды высокого давления 22
Китайская инженерия, или лучше прогнуться, чем лопнуть 23
Летучие мыши и птеродактили 23
Почему же птицы имеют перья? 24
Глава 6 24
О соединениях, креплениях и людях, а также о ползучести и колесах колесниц 24
Прочные соединения и человеческие слабости 25
Распределение напряжений в соединениях 26
Заклепочные соединения 26
Сварные соединения 27
Ползучесть 27
Глава 7 28
Мягкие материалы и живые конструкции, или как сконструировать червяка 28
Поверхностное натяжение 28
Поведение существующих в природе мягких тканей 29
Коэффициент Пуассона, или как работают наши артерии 30
Надежность, или о вязкости тканей животных 31
Строение мягких тканей 32
Часть III. Конструкции в условиях сжатия и изгиба 32
Глава 8 32
Стены, арки и плотины, или башни, уходящие в облака, и устойчивость каменной кладки 32
Линии давлений и устойчивость стен 33
Плотины 35
Арки 35
Масштаб, пропорции и надежность 36
О позвоночнике и скелете 37
Глава 9 37
Кое-что о мостах, или святой Бенезе и святой Изамбар 37
Арочные мосты 37
Чугунные мосты 38
Арочные мосты с подвесной проезжей частью 38
Подвесные мосты 38
Линия давления в арках и подвесных мостах 39
Мостовые фермы с верхним криволинейным поясом 39
Глава 10 40
Чем хороши балки, или о крышах, фермах и мачтах 40
Фермы перекрытий 41
Фермы в кораблестроении 42
Консоли и шарнирно опертые балки 43
Фермы мостов 44
Напряженное состояние балок 45
Продольные напряжения в изгибаемой балке 45
Глава 11 46
Тайны сдвига и кручения, или "Поларис" и вечерние туалеты 46
Терминология 46
Стенка балки в условиях сдвига - изотропные и анизотропные материалы 47
Касательное напряжение - это растяжение и сжатие, действующие под углом +45°, и наоборот 48
Складкообразование 48
Кручение 49
Центр изгиба и центр давления 49
Глава 12 51
Различные виды разрушения при сжатии, или сэндвичи, весла и Леонард Эйлер 51
Предел прочности на сжатие, или разрушение коротких стержней и колонн при сжатии 51
Сравнение прочности материалов на растяжение и на сжатие 52
Прочность дерева и композиционных материалов при сжатии 52
Леонард Эйлер и выпучивание тонких стержней и пластин 54
Трубы, корабли и бамбук, или кое-что о локальной потере устойчивости 55
Листья, сэндвичи и сотовые конструкции 55
Часть IV. И последствия были… 56
Глава 13 56
Философия конструирования, или форма, вес и стоимость 56
Проектирование конструкций, работающих на растяжение 56
Сравнения веса сжатых и растянутых конструкций 57
Масштабные эффекты, или еще раз о законе двух третей 58
Каркасные конструкции против монокока 58
Надувные конструкции 59
Колеса со спицами 59
О выборе лучшего материала, или что такое "лучший материал" 59
Материалы, топливо и энергия 60
Глава 14 61
Катастрофы, или очерк об ошибках, прегрешениях и усталости металла 61
О точности расчетов на прочность 61
Проектирование с помощью эксперимента 62
Сколько она будет служить? 62
Усталость металла, мистер Хани и пр. 63
Катастрофы деревянных кораблей 64
Еще о котлах, сосудах давления и о кипящем в них масле 64
О вырезании дыр 65
Об излишнем весе 66
Аэроупругость, или тростник, колеблемый на ветру 67
Проектирование как прикладная теология 67
Глава 15 68
Эффективность и эстетика, или мир, в котором мы должны жить 68
Об эффективности и функциональности 70
О стилях и напряжениях 72
Об имитации, подделках и украшениях 73
Приложения 73
Приложение 1. О справочниках и формулах 73
Приложения 2-4 74
Приложение 2. Теория изгиба балок 74
Приложение 3. Кручение 74
Приложение 4. Эффективность стержней (колонн) и пластин при сжатии 74
Рекомендации для дальнейших занятий 74